Urban Capability Assessment

Proposed Residential Development, Bakali Rd, Forresters Beach

80519020

Prepared for Terrigal Grosvenor Lodge Pty Ltd

22 December 2020

Our Ref: 80519020:SJB Contact: Sara Belgrove

22 December 2020

Terrigal Grosvenor Lodge Pty Ltd PO Box 654 TERRIGAL NSW 2250

Attention: John Klumper

Dear John,

URBAN CAPABILITY ASSESSMENT PROPOSED RESIDENTIAL DEVELOPMENT - BAKALI ROAD, FORRESTERS BEACH

In 2015 Cardno were engaged by Terrigal Grosvenor Lodge Pty Ltd to prepare an Urban Capability Assessment associated with the planning proposal for the above project.

We note that the existing site has not altered between 2015 and 2020 and that the findings of the Urban Capability Assessment attached to this letter remain valid. We do note that references to Gosford City Council should be replaced with Central Coast Council to reflect changes in the local government authority over the referenced time period.

Yours sincerely,

Belgine

Sara Belgrove Branch Manager - Central Coast Office for Cardno Direct Line: +61 2 4320 1009 Email: Sara.Belgrove@cardno.com.au

Cardno (NSW/ACT) Pty Ltd ABN 95 001 145 035

34/205-207 Albany Street North Gosford NSW 2250 Australia

Phone +61 2 4323 2558 Fax +61 2 4324 3251

www.cardno.com

TGI Ptv I td

Contact Information

Cardno (NSW/ACT) Pty Ltd Trading as Cardno Geotech Solutions ABN 95 001 145 035

34/205-207 Albany Street North Gosford NSW2250 Australia

Telephone: 02 4949 4300 Facsimile: 02 4966 0485 International: +61 2 4949 4300

geotech@cardno.com.au www.cardno.com.au

Document Information

Prepared for

i repared for	
Project Name	Proposed Residential Development, Bakali Rd, Forresters Beach
Job Reference	80514013
File Reference	80514013-002.0
Date	25 November 2015

A. Statit Adi Alireza Mohiti Senior Geotechnical Engineer

Version Number 0 Effective Date 25/11/15

Approved By:

Author(s):

Ian Piper Principal

Date Approved: 25/11/15

Document History

Version	Effective Date	Description of Revision	Prepared by:	Reviewed by:
0	25/11/15	First issue	AM	IGP

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Intro	duction		1
2	Site I	dentifica	tion	2
3	Site C	Condition	n and Surrounding Environment	2
4	Site H	listory a	nd Background	3
	4.1	Publish	hed Data	3
		4.1.1	Geology	3
		4.1.2	Acid Sulphate Soils	4
		4.1.3	Hydrogeology	4
	4.2	Sectior	n 149 Planning Certificates	4
	4.3	Historia	c Title Deeds Search	5
	4.4	Review	v of the Historical Aerial Photos	7
	4.5	Office	of Environment & Heritage (EPH) Notices	9
5	Inves	tigation	Methodology	9
	5.1	Site Inv	vestigation	9
	5.2	Labora	atory Testing	10
	5.3	Enviro	nmental soil sampling methodology	10
6	Inves	tigation	Findings	11
	6.1	Subsu	rface Conditions	11
	6.2	Labora	atory Test Results	12
		6.2.1	Soil Reactivity and CBR	12
		6.2.2	Soil Property and Classification	12
		6.2.1	Soil Aggressivity	13
		6.2.2	Environmental Laboratory Test Results	13
	6.3	Quality	/ Assurance	1
7	Com	ments an	d Recommendations	2
	7.1	Prelimi	inary Contamination Assessment (PCA)	2
		7.1.1	Criteria for Contamination Assessment	2
		7.1.2	Areas of Environmental Concern (AEC)	2
		7.1.3	Analytical Results	3
		7.1.4	Discussion	3
		7.1.5	PCA Conclusion	4
	7.2	Aggres	ssivity Assessment	5
		7.2.1	Exposure to Steel Piles	5
		7.2.2	Exposure to Concrete Piles	5
	7.3	Geoteo	chnical Assessment	6
		7.3.1	Earthworks	6
		7.3.2	Excavations	7
		7.3.3	Filling	7
		7.3.4	Footings Recommendations and Founding Conditions	7
		7.3.5	Pavements	8
8	Conc	lusions		10
9	Limit	ations		11
Ref	erence	S		12

Appendices

- Appendix A Drawings
- Appendix B Engineering Logs
- Appendix C Laboratory Test Results
- Appendix D Site Photographs
- Appendix E Historical Data

Tables

Table 3-1	Observations and Areas with Environmental Significance	3
Table 4-1	Registered Groundwater Bores	4
Table 4-2	Review of S149 certificates summary	4
Table 4-3	Historic Title Search Results	5
Table 4-4	Aerial Photography Review	7
Table 6-1	Subsurface Conditions Summary	11
Table 6-2	Shrink/swell testing results	12
Table 6-3	Laboratory CBR test results	12
Table 6-4	Material property test results	13
Table 6-5	Soil aggressively testing	13
Table 6-6	Results of Laboratory Analysis for Heavy Metals	14
Table 6-7	Results of Laboratory Analysis for Laboratory results for TRH, BTEX and Naphthalene	16
Table 6-8	Results of Laboratory Analysis for PAHs, OPP, PCB and Phenols	18
Table 6-9	Results of Laboratory Analysis for Organochlorine Pesticides	20
Table 6-10	Results of Laboratory Analysis for Asbestos in Soil	22
Table 6-11	Summary of Analytical Results Quality Assurance, results in mg/kg	1
Table 7-1	Exposure Classification for Steel Piles in Soil	5
Table 7-2	Exposure Classification for Concrete Piles in Soil	5
Table 7-3	Pavement Composition (CBR 10%)	9
Table 7-4	Pavement material specification and compaction requirements	9

1 Introduction

This report presents the results of Urban Capability Assessment (UCA) undertaken by Cardno on the proposed residential subdivision located at Bakali Rd, Forresters Beach.

Cardno has been commissioned by Mr Paul Klumper of TGL Pty Ltd to undertake a UCA for the proposed residential development.

The UCA including preliminary geotechnical and contamination assessments are required by Gosford City Council (GCC) to assist the subdivision design and form part of the Development Application submission.

Preliminary geotechnical investigation comprises subsurface assessment, laboratory testing, and reporting which will provide sufficient information to quantify the construction risks associated with the development.

Preliminary Contamination Assessment aims to identify any contamination risk associated with the site. The investigation and reporting has been undertaken in accordance with NSW EPA Guidelines for Consultants Reporting on Contaminated Sites and State Environmental Planning Policy No 55 (SEPP 55) Remediation of Land [1].

The following information is required to be provided as part of the UCA:

- > Indication of the preliminary pavement design and subgrade conditions.
- > Preliminary indication of the expected site classification.
- > Erodibility and aggressivity assessment.
- > Recommendations for earthworks procedures and guidelines.
- > Preliminary Contamination Assessment (PCA).

Based on the subdivision layout plans (SLP) prepared by Bannister & Hunter Pty Ltd (Ref No. 55823, dated 11 November 2015) and provided by the client, it is understood that the proposed development comprises the following:

- > Overall development in four construction stages.
- > Creation a total of 68 residential dwellings and construction of the associated infrastructure.
- > Construction of internal access roads.
- > Construction of detention basins.

In addition, the following data has been provided to assist the assessment:

> Topographic survey plan (TSP) of the north and north-eastern portion of the site prepared by Bannister & Hunter Pty LTD, Dwg No. 55823S11, dated April 2008.

2 Site Identification

The site currently comprises of eight existing individual parcels which are identified as following:

- > Large allotments of Lot 1 to 4 in DP1000694 and Lot 522 in DP1077907
- > Smaller allotments of Lot 3 DP101649, Lot 18 DP23283 and Lot 51 DP1028301

The site is irregular in shape and occupies an approximate area of 9.8ha and comprises a combination of rural and residential developments.

The site is bounded by existing rural development and undeveloped land to the west, the Swinger Golf Course to the north, existing residential development and Central Coast Highway to the east and south.

3 Site Condition and Surrounding Environment

The following Features were observed at the time of the site investigation (with the relevant photographs attached in Appendix D) as indicated below:

- > Topographically the site is situated within relatively flat to slightly sloping terrain located within the catchment area of Forresters Creek and Wamberal Lagoon.
- > Overall the surface comprises gentle west and north-west facing slopes with gradients in order of less than 3°.
- > A north-west south-east trending drainage channel transecting the site and dividing the site into two northern (NP) and southern portion (SP).
- > The majority of the eastern portion of NP has been cleared of vegetation with the site surfaces supported by grass cover. An abandoned shed and residential dwelling is located at the vicinity of the eastern boundary of NP. The majority of the NP is undeveloped grazing land with the western portion of NP heavily vegetated.
- > The SP of the site comprises four large rural residential dwellings and two smaller residential dwellings along the Central Coast Hwy boundary. The majority of the SP has been cleared of vegetation with scattered mature native trees present in isolated areas.
- > Minor modifications to the site natural topography was observed (refer to the Table 3-1 for details).
- > Reference to TSP provided and Gosford Council Electronic Mapping topographic database, the elevations across the site ranges from 15m AHD at the north eastern corner to 8m AHD at the north western portion and 10m AHD at the southern corner of the site.
- > A large dam is located to the south of the drainage channel at the north-western corner of the SP.
- > Surface disturbance at the middle portion of the Lot 4 DP1000694 observed in an approximate circular shape which is expected to be associated with construction of landscaping pond or a farm dam.
- Surface disturbance was also observed within the southern portion of Lot 1 DP 1000694 which is understood to be associated with construction of a farm dam. Based on the discussion with the landlord, the dam has been disused and filled due to incapability in water detention.

The following site features with environmental significance were observed during the site inspection. The locations of areas with environmental significance are shown in Drawing GE-001 attached in Appendix A.

Observation Identification (OI) Number (refer to Drawing 1)	Observation	Potential Environmental Risk
1	Fill stockpile	Unknown origin
2	Large fill stockpile with estimated volume of less than 500 m ³ , no foreign material observed on the surface	Unknown origin and composition
3	Fill platform	Unknown origin and composition
4	Abandoned residential dwelling and shed	Potential asbestos fibre containing construction material
5	Scattered fibrous material, surface disturbance and demolition refuse	Possible asbestos fibre contamination
6	Stockpiles, covered with vegetation	Unknown fill origin and composition
7	Household refuse items along the drainage channel such as bicycle and bike rim and tyre	Aesthetic
8	Small fill stockpiles along the boundary of the site with existing residential developments along Central Coast Hwy	Unknown fill origin and composition
9	Household refuse and dumping of garden waste along the boundary of the site with existing residential developments along Central Coast Hwy	Aesthetic

Table 3-1 Observations and Areas with Environmental Significance

In order to provide information regarding the identified AECs, investigation, sampling and limited laboratory analysis were undertaken to further characterised the contamination status of the site. The findings of the assessment has been provided in the following sections.

4 Site History and Background

The review of the site history and background undertaken comprised a review of:

- > The published geological data, acid sulphate soils maps and hydrogeology.
- > Obtained Section 149 Planning Certificates.
- > Title deed searches.
- > Historical aerial photos.
- > Public records maintained by the NSW EPA regarding notices made under the Contaminated Land Management Act 1997 and licenses issued under the Protection of the Environment (Operations) Act 1997.

4.1 Published Data

4.1.1 <u>Geology</u>

Reference to the Gosford-Lake Macquarie 1:100,000 geological map (geological series sheet 9131 & part sheet 9231) [2] indicates that:

- > The southern portion of the site is situated within Patonga Claystone Formation of the Narrabeen Group which is known to comprise red-brown claystone and siltstone and light green-grey fine-grained sandstone.
- > The northern portion of the site is situated within Quaternary aged deposits of gravel, sand, silt and clay compositions.

4.1.2 <u>Acid Sulphate Soils</u>

A review of the Gosford City Council Electronic Mapping System acid sulphate risk maps revealed that the site is situated within an area of no known occurrence of Acid Sulphate soils (ASS).

4.1.3 <u>Hydrogeology</u>

A search of the Groundwater Maps of the Department of Primary Industry Office of Water indicated that there were numerous registered groundwater bores located within 1km radius of the site with information from selective bores summarised in Table 4-1. The following bore information has been extracted from available bores within 1.0km radius of the site.

Bore ID	Approximate Distance from the site	Intended Purpose	Depth of bore m (BGL)	Standing Water level m (BGL)	Subsurface Profile
GW201938	400m south-east	Domestic	18.0	8.0	Sand and clay to 16.0 followed by shale to depth
GW054153	750m north-west	Domestic	18.0	5.7	Clay to 12.0m followed by sandstone
GW201721	870m north-west	Monitoring Bore	15.0	9.1	Fill overlaying Silty clay
GW202283	940m north-west	Monitoring Bore	8.0	6.0	Fill overlaying sandy clay
GW201720	700m north-west	Monitoring Bore	13.5	3.33	Filling to 0.5m followed by clay to 2.25m and silty clay to 13.5
GW051860	600m north	Stock, Domestic	21.0	3.0	Clay to 12.0m followed by shale

Table 4-1 Registered Groundwater Bores

Notes:

BGL: Below Ground Level

"-": no information supplied

The summary of the reports obtained from the NSW Office of Water are attached in Appendix E which provides more information regarding the bores detail.

4.2 Section 149 Planning Certificates

Section 149 certificates for the eight allotments forming the proposed development were obtained from GCC. The review of the S149 certificates are summarised in Table 4-2.

Table 4-2	Review of S149 certificates summary	

Identification	Zoning and Land Use	Mine Subsidence within the meaning of Section 15 of Mine Subsidence Compensation ACT 1961	Flood related Controls	Bushfire Prone Land	Contaminated land management ACT 1997 notices under Section 59(2)
Lot 522 DP 1077907	 No.7(a) conservation and scenic protection (conservation) 7(c2) conservation and scenic protection(scenic protection-rural small holdings) 	The land has not been proclaimed	No	All parts of the land is shown as bushfire prone on Council's records	No
Lot 1 DP 1000694, Lot 2 DP 1000694, Lot 3 DP 1000694,	7(c2) conservation and scenic protection(scenic protection-rural small holdings)	The land has not been proclaimed	No	All parts of the land is shown as bushfire	No

Lot 4 DP 1000694				prone on Council's records	
Lot 51 DP 1028301, Lot 51 DP 1028301 and Lot 3 DP 101649	7(c2) conservation and scenic protection(scenic protection-rural small holdings	The land has not been proclaimed	No	All parts of the land is shown as bushfire prone on Council's records	No

A copy of the S149 certificates are attached in Appendix E of this report.

4.3 Historic Title Deeds Search

The title deeds search results for five of the eight allotments were supplied by the client which provided limited information about the history of the site ownership. Review of the title deeds search results indicated that:

- > Lot 4 DP1000694 has been owned by Versatile Living Pty Ltd.
- > Lot 51 DP 1028301, Lot 3 DP 101649, Lot 522 DP 1077907 and Lot 18 DP 23283 have been owned by Terrigal Grosvenor Lodge Pty Ltd (TGL).

In addition, Legal Liaison Searching Services was engaged by Cardno to undertake a title deed search of the remaining three lots.

The search results are contained in Appendix E and are broadly summarised as detailed in the table below.

Table 4-3	Historic	Title	Search	Results
	Instone	TILLE	Search	Nesuits

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale					
	As regards the part tinted pink and orange on the attached copy of D.P. 1000694 ¹ (This part was formerly a road, subsequently closed by notification in Government Gazette dated 15.07.1905)						
10.04.1931 (1931 to 1931)	N.S.W. Realty Co Limited	Vol 4475 Fol 124					
29.10.1931 (1931 to 1936)	William Harvey (Retired Manufacturer)	Vol 4475 Fol 124 Now Vol 4515 Fol 200					
20.05.1936 (1936 to 1941)	William Hedley Harvey (Furniture Warehouseman) (Transmission Application not investigated)	Vol 4515 Fol 200					
10.07.1941 (1941 to 1951)	Otto Oscar Groth (Produce Merchant)	Vol 4515 Fol 200					
26.06.1951 (1951 to 1959)	Emma May Jorgensen (Married Woman)	Vol 4515 Fol 200					
09.12.1959 (1959 to 1972)	Linda Monica Barrie (Widow) James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 4515 Fol 200 Now Vol 8204 Fol 168					
14.06.1972 (1972 to 1972)	James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 8204 Fol 168					
29.06.1972 (1972 to 1973)	Kevin Arthur Rubie (Company Representative) Margaret Rose Rubie (Married Woman)	Vol 8204 Fol 168					
07.06.1973 (1973 to 1992)	K & M Rubie Pty Limited	Vol 8204 Fol 168 Now Auto Consol 8204-168					

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
06.11.1992 (1992 to 1992)	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	Auto Consol 8204-168 Now 1/121549
08.12.1992 (1992 to 1999)	The Park-Forresters Beach Pty Limited	1/121549 Now 3/1000694
As reg	ards the part tinted yellow on the attached copy o	f D.P. 1000694
30.12.1913 (1913 to 1920)	N.S.W. Realty Co Limited	Vol 1991 Fol 206
21.12.1920 (1920 to 1943)	William Julian Hosking (Painter) (& His Deceased Estate)	Vol 1991 Fol 206 Now Vol 3148 Fol 215
26.08.1943 (1943 to 1947)	Stanley Robert Dalziell (Turner)	Vol 3148 Fol 215
22.12.1947 (1947 to 1949)	Thomas Kenneth Griffin (Poultry Farmer)	Vol 3148 Fol 215
22.07.1949 (1949 to 1954)	Ethel Mary Mullen (Married Woman)	Vol 3148 Fol 215 Now Vol 6573 Fol 235
25.10.1954 (1954 to 1969)	Albert Gregory (Poultry Farmer)	Vol 6573 Fol 235
29.07.1969 (1969 to 1969)	Frederick Roy Bononfant (Retired)	Vol 6573 Fol 235
19.12.1969 (1969 to 1974)	Keith Edward Jones (Butcher) Beryl May Jones (Married Woman)	Vol 6573 Fol 235
17.10.1974 (1974 to 1977)	Romon (No. 10) Pty Limited	Vol 6573 Fol 235
27.06.1977 (1977 to 1992)	K & M Rubie Pty Limited	Vol 6573 Fol 235 Now Vol 13395 Fol 214
06.11.1992 (1992 to 1992)	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	Vol 13395 Fol 214
08.12.1992 (1992 to 1999)	The Park-Forresters Beach Pty Limited	Vol 13395 Fol 214 Now

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale			
		1, 2 & 3/1000694			
	Search continued as regards Lot 1 D.P. 1000	0694			
01.06.1999# Melissa Leigh Hall1/1000694(1999 to date)# Damian Bradley James Scott1/1000694					
	Search continued as regards Lot 2 D.P. 1000	0694			
18.06.1999	# Craig John Horton	2/1000694			
(1999 to date)	# Trudy Anna Horton	2/1000034			
	Search continued as regards Lot 3 D.P. 1000	0694			
16.06.1999	John Stephen Barr	3/1000694			
(1999 to 2002)	Kathryn Jane Barr	3/1000094			
30.08.2002	# Brendon Robert Briggs	3/1000694			
(2002 to date)	# Julie Anne Briggs	0,100000+			

Notes:

1- Copy of the plan is attached in Appendix E.

Denotes current registered proprietors

4.4 Review of the Historical Aerial Photos

A review of a range of aerial photography obtained from NSW Land and Property Information was undertaken with the findings summarised in the following table.

The ability to discern site features was limited due to the relatively small scale and poor resolution of some of the photographs. A summary of observed site features detailed in the reviewed aerial photographs are detailed in Table 4-4 and aerials are attached in Appendix E.

Date	Scale	Colour	Observations
May	12000	B & W	On Site:
1954			 The site is covered with vegetation with the exception of the cleared areas within the north-eastern portion and mid-southern portion of the site.
			 A residential dwelling and associated shed/garage/farm sheds are present within the eastern portion of the NP.
			 Five large structures and a number of smaller structures are present along the eastern boundary of the NP. The structures appear to be associated with farming activities.
			 A number of access tracks are present across the site mainly around the existing structures.
			Off Site:
			 Lands to the north and west of the site are generally undeveloped.
			 Central Coast highway is present following the current alignment.
			 Minor rural developments are present to the east of the Central Coast Highway.
June	12500	B & W	On Site:
1965			 Conditions are consistent with 1954 photograph.
			 The conditions within the NP are consistent with 1954 photograph.
			 Addition of several structures (sheds) at within the SP of the site indicating potentially poultry farming.
			 A large shed is present along the western boundary of SP at approximate location of current Lot 2 DP 1000694.
			 The extent of site vegetation clearing similar to 1954 photograph.
			Off Site:

Date	Scale	Colour	Observations
			 A number of residential dwellings following the current layouts are present along the
			 Central Coast Hwy to the east of the site. Increase in the density of the rural developments to the east of the Central Coast
			 Increase in the density of the rural developments to the east of the Central Coast Hwy.
			 Increase in clearing of the lands to the north of the site.
July	16000	B & W	On Site:
1979			 Conditions are consistent with 1965 photograph.
			 The conditions within NP are consistent with 1965 photograph.
			 A residential dwelling has been constructed on Lot 3 DP101649 consistent with the location of surface disturbance observed in OI No. 5 in Table 3-1.
			 The majority of the industrial farming sheds have been removed within the SP with the exception of one long shed and one smaller along the eastern boundary of NP.
			 Stockpile of demolition refuse is present within the SP.
			 Fill platform associated with the large shed footprints is apparent along the western boundary of the NP. The location of the shed and filling correlates to OI No.3 in Table 3-1.
			Off Site:
			Similar to the 1965 conditions.
			 Appearance of residential developments to the east of the Central Coast Hwy and north of the site.
			 Increase in the number of residential dwellings along the site eastern boundary adjacent to Central Coast Hwy.
			 Extensive vegetation clearance immediately east of the Central Coast Hwy.
Aug	16000	Colour	On Site:
1986			 Conditions are consistent with 1979 photograph.
			 The Conditions within the SP are consistent with 1979 with the exception of extension of cleared land to the north of the SP.
			 The formed drainage channel consistent with the present location is constructed separating NP and SP.
			 The residential dwelling at the north-eastern corner of NP and associated farm shed/garage has been demolished. Two additional residential structures and associated garage are constructed south of the demolished dwelling. The location of one of the dwellings and garage is consistent with OI No.4 of the Table 3-1.
			Off Site:
			Similar to the 1979 conditions.
			 Increase in the number of residential developments in the area.
Мау	7000	Colour	On Site:
1996			 Conditions are consistent with 1986 photograph.
			 The demolition refuse from previous residential dwelling located at the east of the NP has been removed. The NP conditions are similar to 1986 photograph.
			 A larger shed of the two remaining sheds within the SP has been removed (one shed remaining). Stockpile of demolition refuse is present at the location of the previous shed.
			 Residential dwellings have been constructed within Lot 18 DP 23283 and Lot 51 DP 1028301.
			Off Site:
			Similar to the 1986 conditions.
			 A pump station has been constructed to the west of the site.
			 Increase in the residential developments density in the area.
June	-	Colour	The four rural dwelling present at the current site conditions have been constructed.
2005		(Google Earth)	 The site manmade structures are consistent with present.
		Eartil)	 The dam within the north-western corner of the SP is present on site.
			 Placement of filling to the east of the Lot 4 DP 1000694 is visible. The location of the fill stockpiles are consistent with the OI No. 02 of the Table 3-1.

Date	Scale	Colour	Observations					
			 The residential dwelling to the west of the OI No. 4 of the Table 3-1 has been demolished. 					
			 A number of stockpiles (not soil) present to the south of the dwelling on the property Lot 1 DP 1000694. 					
Mar		Colour	Conditions are consistent with 2005 photograph					
2015		``	 The residential dwelling within the lot 3 DP 1016499 (within the eastern portion of the NP) still present on site. This dwelling did not exist at the time of site investigation and the location correlates with OI No. 5 of Table 3-1. 					

Based on the review of the available historical aerial photographs, it is understood that the site has generally been used for small scale farming activities with the exception of the several farm sheds constructed within the SP in 50s and 60s with the majority of the sheds were removed in 1979 photograph. Three residential dwelling were constructed within the north-eastern portion of the NP and have been demolished.

There are no evidence that the site has been subject to any significant filling or disturbance with the exception of the filling placed for the construction of the large shed along the western boundary of the site (OI No.03 Table 3-1) and filling placed to the east of the Lot 4 DP 1000694 (OI No.02 Table 3-1).

4.5 Office of Environment & Heritage (EPH) Notices

A search of Department of Environment & Climate Change (DECC) records revealed no notices have been issued for the site under the Contaminated Land Management Act (1997). Under Section 308 of the Protection of the Environment Operations Act (POEO) a public register is required to list licenses, applications, or notices issued by the DECC. A search of the public register for the site did not reveal any licenses, applications, or notices.

5 Investigation Methodology

5.1 Site Investigation

The site investigation was undertaken on 20 and 21 October 2015 and comprised the following:

- > Site walkover by an experienced geotechnical engineer to map the site's significant features.
- > Drilling of fourteen test bores (TB001 to TB014) by mechanical auger mounted to a 5 tonne excavator to target depth of 2.2m BGL using a solid flight auger. No refusal was encountered in the test bores and they were all advanced to the target depth.
- > Dynamic Cone Penetrometer (DCP) testing which was conducted adjacent to selected test bore locations to aid in the assessment of in situ soil strength conditions.
- > Engineering assessment and logging of the subsurface profiles encountered by a senior geotechnical engineer from Cardno.
- > Sampling of material considered representative of subsurface profile encountered across the site for the purpose of laboratory assessment.
- > Backfilling of the holes with excavation spoil materials.

Additional assessment of the site stockpiles were undertaken in addition of the test bores with the results discussed in the section 7.1. The test bores were located to provide coverage of conditions across the site area, with consideration to the future development requirements and historical site features. The testing locations are shown on Drawing GE-002 attached in Appendix A. The locations of all test bores should be considered approximate only.

Engineering logs are contained within Appendix B together with explanatory notes.

5.2 Laboratory Testing

Laboratory testing conducted on selected samples recovered during the fieldwork comprised of the following.

- > Six (6) shrink/swell tests carried out on thin wall tube (50 mm diameter) samples to measure the potential for soil volume change.
- > Three (3) four-day soaked California Bearing Ratio (CBR) tests to assess subgrade strength.
- > Three (3) sets of Particle Size Distribution (PSD) and Atterberg Limits tests to aid in the determination of soil classification;
- > Four (4) Emerson class dispersion tests to assess the erodibility potential of the site soils.
- > Four (4) soil aggressivity tests including pH, Electrical Conductivity (EC), sulphate, chloride
- > Ten (10) soil contamination tests (including duplicate and triplicate QA samples) for eight metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn), organochlorine pesticides (OCPs) and organophosphate pesticides (OPPs), Total Recoverable Hydrocarbons (TRH), BTEX (Benzene, Toluene, Ethyl-benzene and Xylenes), Polycyclic Aromatic Hydrocarbons (PAH), Volatile Organic Compounds (VOC), Polychlorinated Biphenyls (PCB).
- > One asbestos ID and one asbestos fibre detections.
- > One Trip Blank and Trip Spike for quality assurance.

All geotechnical testing was conducted at Cardno's NATA accredited laboratory with report sheets included in Appendix C. The chemical laboratory testing was dispatched to external NATA accredited laboratories.

5.3 Environmental soil sampling methodology

Environmental sampling was performed according to Cardno standard operating procedures with sampling data recorded on Chain of Custody sheets. Eight discrete soil samples from targeted locations were collected at variable depths across the site along with QA laboratory duplicate and triplicate samples. In addition, laboratory prepared trip blank and trip spike samples were hold accompanying the field samples during the investigation.

The methodology utilised is as follows:

- > The use and changing of disposable gloves between each sampling event to prevent cross contamination;
- > A Photo Ionisation Detector (PID) was used to screed each sample with the readings recorded on engineering logs;
- Decontamination of all sampling equipment using a 3% solution of phosphate free detergent (Decon 90) and tap water prior to each pit/bore;
- > Soil sample storage for all sampling events was via appropriate containers supplied by SGS laboratories;
- > Sufficient samples with zero headspace into laboratory prepared sampling jars with the sample details added to the label on the jar.
- > The sample jars were preserved in a chilled esky containing ice immediately after sampling and during transport to the laboratories. The laboratory chain of custody documentation was completed and accompanied the samples during shipment.

The majority of the samples were collected at the intrusive testing locations with the sample IDs representing the test pit locations. A plan (Drawings GE-002) showing the location of each environmental sample is attached in Appendix A.

6 Investigation Findings

6.1 Subsurface Conditions

The subsurface conditions encountered in the test bores are summarised in the Table 6-1.

Table 6-1 Subsurface Conditions Summary

Unit	Description	Depth Range (m) BGL	Consistency Range ¹ / Rock Strength	Moisture Condition/ Rock Weathering
TOPSOIL	 Generally Comprising Silty SAND 	 Topsoil was encountered at surface to 0.2 Topsoil was also encountered below site filling at TB009 and TB011 at 0.25 – 0.8 	NA	D-M
FILL	 Variable composition of Silty CLAY, Gravelly SAND and Silty SAND. Encountered in TB003, TB005 and TB009 Test bores TB005 and TB009 were drilled through the identified filling areas (refer to drawings). 	 0 – 0.5 generally Deeper filling was observed in TB005 were the test bore was drilled on top of the fill platform OI No.02 Table 3- 1. 	NA	D-M
ALLUVIUM	 Various composition was encountered in most of the test bores across the site. Sandy SILT, Silty CLAY, Clayey SILT and Silty SAND 	• 0.1 – 0.8	 Stiff clays Medium dense encountered in TP008 	Μ
RESIDUAL	 Generally Silty CLAY encountered in all test bores with the exception of Silty CLAY encountered in TB007 	 0.2 – 2.2 (maximum depth of investigation) 	Generally firm to hard	Ranges from below to above optimum moisture content (SOMC)
Bedrock	SILTSTONE was encountered only in two test bores (TB007 and TB010) drilled along the eastern boundary of the site.	ly in two test bores (TB007 BGL to the depth of excavation		Extremely weathered

Notes:

D= Dry

M= Moist

1- Inferred from Dynamic Cone Penetrometer (DCP) test results and engineering judgement.

Slight seepage was encountered at TB003 drilled at the vicinity of the formed drainage channel with no seepage or groundwater encountered in the remaining test bores. The groundwater table is expected to follow the area topography and flow north/north-westerly towards the lower lying areas and Forresters Creek catchment areas. It should be noted that groundwater levels are likely to fluctuate with variations in climatic and site conditions.

For details of the subsurface conditions encountered, reference should be made to the engineering logs of test bores attached in Appendix B, together with Explanatory Notes.

6.2 Laboratory Test Results

6.2.1 Soil Reactivity and CBR

The results of the laboratory shrink/swell tests undertaken on samples considered representative of site soils are summarised below in Table 6-2.

Table 6-2 Shrink/swell testing results

Hole ID	Depth (m)	Sample Type	Soil Type	Swelling strain (E _{sw}) (%)	Shrinkage strain (E _{sh}) (%)	Shrink/Swell index (I _{ss}) (%)
TB003	0.75 – 1.15	U50	Silty CLAY	0.0	0.9	0.5
TB006	0.4 – 0.6	U50	Silty CLAY	0.0	5.6	3.1
TB006	1.0 – 1.2	U50	Silty CLAY	0.5	3.8	2.3
TB008	0.6 – 0.9	U50	Silty CLAY	0.0	2.9	1.6
TB010	0.5 – 0.74	U50	Silty CLAY	1.3	5.2	3.2
TB010	0.9 – 1.1	U50	Silty CLAY	1.0	3.8	2.4

Notes:

U50: testing undertaken on thin wall tube samples

B: testing undertaken on remoulded disturbed samples

The results of standard compaction and California Bearing Ratio (CBR) testing are summarised below in Table 6-3.

Table 6-3 Laboratory CBR test results

Hole ID	Depth (m)	Soil Type	W (%)	SOMC (%)	SMDD (t/m³)	Swell (%)	CBR (%)
TB001	1.0 – 1.2	Silty CLAY	24.9	21.0	1.69	3.0	2.0
TP005	1.1 – 2.0	Silty CLAY	24.8	17.0	1.81	2.5	3.5
TB009	0.8 – 1.4	Silty CLAY	24.2	20.5	1.66	2.0	3.5
TP011	0.6 – 1.0	Silty CLAY	23.1	21.5	1.66	5.0	1.5

Notes to table:

W: Field moisture content

SMDD: Standard Maximum Dry Density

CBR testing was undertaken on remoulded specimens compacted to a target 100% standard maximum dry density with a surcharge of 4.5 kg and soaked for four days. Subgrade strength is moisture and density dependent and where the existing subgrade is compacted to less than 100% standard compaction and moistures above SOMC exist, the in situ CBR values may be less than the above tested values.

6.2.2 Soil Property and Classification

Results of material property and classification testing on selected samples of the site soils are summarised below in 0.

Table 6-4 Material property test results

Hole ID	Depth (m)	Soil Type	Passing 2.36 mm	Passing 75 µm	LL (%)	PL (%)	PI (%)	Emerson Class
TB002	0.2 – 0.7	Silty CLAY	99	73	27	15	12	2
TB007	0.6 – 1.0	Sandy CLAY	58	98	38	17	21	2
TB012	0.4 – 0.5	Silty CLAY	84	97	44	14	30	2
TB005	1.1 – 2.0	FILL, Silty CLAY	NT	NT	NT	NT	NT	2

Notes to table: LL: Liquid Limit PL: Plastic Limit **PI: Plasticity Index**

NT: Not Tested

6.2.1 Soil Aggressivity

Results of soil aggressivity tests on selected samples obtained from the test bores and considered representative of the site soils encountered are summarised below in Table 6-5.

Table 6-5 Soil aggressively testing

Test bore ID	Depth (m)	Soil Type and (Groundwater Condition)	pH(1:2) ²	EC (dS/m)	Resistivity (Ωcm)¹	Sulphate (mg/kg)	Chloride (mg/kg)
TB006	0.1 – 0.2	Silty CLAY (Above GW)	5.0	0.05	20000	9.8	8.7
TB008	1.8 – 2.0	Silty CLAY (Above GW)	4.4	0.15	6700	120	9.6
TB012	0.1 – 0.2	Clayey SILT (Above GW)	5.2	0.14	7100	25	48
TB013	0.1 – 0.2	Clayey SILT (Above GW)	5.3	0.17	5900	36	73

Notes to table: Non Aggressive Mildly Aggressive Moderately Aggressive

Not Tested/ Not Applicable

Scale of aggressivity obtained from AS2159 - 2009 [3] for concrete piles in soil

meq/100g: milliequivalent of hydrogen per 100 g of dry soil

1- Aggressivity classification for Steel Piles based on resistivity

Exposure classification for concrete piles based on pH, the exposure classification for steel piles are slightly different based 2on pH values and has been discussed in the respective section of this report

The results of the above soil salinity, sodicity and aggressivity testing are detailed on the Certificate of Analysis attached in Appendix C.

6.2.2 Environmental Laboratory Test Results

Chemical testing was carried out on soil and water samples using SGS Environmental (SGS), which holds current accreditation with the National Association of Testing Authorities, Australia (NATA). The testing of the soil and groundwater was undertaken as a broad scale preliminary assessment. All testing was undertaken within the terms of SGS Laboratories' accreditation.

Copies of the testing laboratory reports are shown in Appendix C. The results of laboratory analysis for inorganic and organic contaminants in the soil samples are summarised in the following tables:

Table 6-6 Results of Laboratory Analysis for Heavy Metals

			Ν	laterial Descriptio	n	Heavy Metals							
Location	Date	Filling (F) /											
	Sampled	Natural (N)	Secondary Constituent	Primary Constituent	Contaminant Observations	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn
						mg/k g	mg/k g	mg/k g	mg/k g	mg/k g	mg/k g	mg/k g	mg/k g
TB005-1	20/10/2015	F	SILT	CLAY	-	5	0.5	25	5.6	11	<0.0 1	2.1	13
TB006-1	20/10/2015	N	SILT	SAND	-	3	<0.3	8.8	7.3	38	0.01	1.6	130
TB007-1	20/10/2015	F	GRAVEL	SAND	-	5	0.3	19	14	15	<0.0 1	15	120
TB008-1	20/10/2015	Ν	SILT	SAND	-	<3	<0.3	1.4	0.5	<1	<0.0 1	<0.5	1.7
TB009-1	20/10/2015	F	SILT	SAND	-	<3	<0.3	6.3	1.5	4	<0.0 1	0.8	43
TB010-1	20/10/2015	N	SAND	SILT	-	4	<0.3	10	3.9	12	0.01	1.6	15
TB011-1	20/10/2015	F	SAND	SILT	With foreign matter	3	<0.3	10	6.1	9	0.01	2.9	40
TB012-1	20/10/2015	N	SILT	CLAY	-	<3	<0.3	4.3	1.9	5	0.01	0.9	6.1
		Guideline Value	25	•	SGS PQL	3	0.3	0	1	1	0.0	1	1
	e for Residentia)			100	20	100	6000	300	40	400	7400
· · ·	NEPM (2013) HILs for Residential A Land-Use (HIL A) NSW EPA (2014) General Solid Waste Contaminant Threshold Concentrations (CT1)				100	20	100	NC	100	40	400	7400 NC	
			t Threshold Concent			400	80	400	NC	400	16	160	NC

<u>Notes</u>

Residential A - residential land-use with garden/accessible soil (home grown produce <10% fruit and vegetable uptake (no poultry)), also includes childcare centres, preschools and primary schools 1 - The EIL is calculated by summing the ACL and the ABC. In the absence of pH, CEC and/or % clay content testing, the most conservative ACL value from Tables 1B(1) to 1B(3) NEPM (2013) is adopted as the EIL.

2 - Urban residential/public open space is broadly equivalent to the Residential A, Residential B and Recreational C land-use criteria

3 - Generic EIL

4 - EIL is the most conservative ACL value adopted from Table 1B(1) to 1B(3) NEPM 2013 in the absence of pH, CEC and/or % clay content testing

5 - Where the contaminant threshold value set for restricted solid waste (CT2) is exceeded, a TCLP test must be carried out to determine the leachable concentration of that contaminant and the class of waste.

Contaminant Exceedance Indicators:

Bold - Indicates exceedance of NEPM (2013) HIL A criteria values for Residential A Land-use						
	Indicates material is classified as General Solid Waste in accordance with NSW EPA (2014), i.e. > CT1 and ≤ SCC1 and ≤ TCLP1					
	Indicates material is classified as Restricted Solid Waste in accordance with NSW EPA (2014), i.e. ≤ CT2 and ≤ SCC2 and ≤ TCLP2					
	Indicates material is classified as Hazardous Solid Waste in accordance with NSW EPA (2014), i.e. > SCC2 and > TCLP2					

Acronyms:

As	Arsenic
Cd	Cadmium
Cr	Chromium
Cu	Copper
Pb	Lead
Hg	Mercury
Ni	Nickel
Zn	Zinc
NEPM (2013)	National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (ammended April 2013)
NSW DECCW (2009)	NSW DECCW, Waste Classification Guidelines, Part 1: Classifying Waste, 2009
NSW EPA (1994)	NSW EPA, Guidelines for Assessing Service Station Sites, 1994
HIL	Health-based Investigation Levels
EIL	Ecological Investigation Level
ACL	Added Contaminant Limit
ABC	Ambient Background Concentration
NC	No Criteria
NT	Not Tested
ND	Not Detected

Table 6-7 Results of Laboratory Analysis for Laboratory results for TRH, BTEX and Naphthalene

Material Description						TRH								BTEX		
Location	Date Sampled	Filling (F) / Natural (N)	Secondary Constituent	Primary Constituent	Contaminant Observations	C ₆ - C ₉	C ₁₀ - C ₃₆	F1 C ₆ - C ₉	F2 > C ₁₀ - C ₁₆	F3 > C ₁₆ - C ₃₄	F4 > C ₃₄ - C ₄₀	Napht h- alene	Benz ene	Tolue ne	Ethyl Benz ene	Total Xyle nes
						mg/kg	mg/k g	mg/k g	mg/k g	mg/k g	mg/k g	mg/kg	mg/kg	mg/k g	mg/kg	mg/k g
TB005-1	20/10/201 5	F	SILT	CLAY	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB006-1	20/10/201 5	Ν	SILT	SAND	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB007-1	20/10/201 5	F	GRAVEL	SAND	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB008-1	20/10/201 5	Ν	SILT	SAND	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB009-1	20/10/201 5	F	SILT	SAND	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB010-1	20/10/201	Ν	SAND	SILT	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB011-1	20/10/201	F	SAND	SILT	With foreign matter	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB012-1	20/10/201 5	Ν	SILT	CLAY	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
TB005-1	20/10/201 5	F	SILT	CLAY	-	<20	<110	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.1	<0.3
		Guideline Valu	es		SGS PQL	20	110	25	25	90	120	0	0.1	0	0	0
NEPM (2013)	HSL A & B - S	and from 0 m to <	1 m bgl			NC	NC	45	110	NC	NC	3	0.5	160	55	40
NEPM (2013)	HSL A & B - S	ilt from 0 m to <1 r	n bgl			NC	NC	40	230	NC	NC	4	0.6	390	NL	95
NEPM (2013)	HSL A & B - C	lay from 0 m to <1	m bgl			NC	NC	50	280	NC	NC	5	0.7	480	NL	110
NEPM (2013)	EIL for Urban	Residential/Public	Open Space ¹			NC	NC	NC	NC	NC	NC	170 ²	NC	NC	NC	NC
NEPM (2013)	ESL ³ for Urba	n Residential/Publi	c Open Space ¹ -	Course Grained S	oils	NC	NC	180 *	120 *	300	2,80 0	NC	50	85	70	105
NEPM (2013)	ESL ³ for Urba	n Residential/Publi	c Open Space ¹ -	Fine Grained Soils	3	NC	NC	180 *	120 *	1300	5,60 0	NC	65	105	125	45
NEPM (2013) Management Limits ⁴ for Residential, Parkland and Open Space ¹ - Course Grained Soils						NC	NC	700	1000	2500	10,0 00	NC	NC	NC	NC	NC
NEPM (2013) Management Limits ⁴ for Residential, Parkland and Open Space ¹ - Fine Grained Soils						NC	NC	800	1000	3500	10,0 00	NC	NC	NC	NC	NC
NSW EPA (20)14) General S	olid Waste Contar	inant Threshold (Concentrations (C	T1)	650	10,00 0 ⁵	NC	NC	NC	NC	NC	10	288	600	1,000
NSW EPA (20	014) Restricted	Solid Waste Conta	aminant Threshole	d Concentrations ((CT2) ⁶	2,600	40,00 0 ⁵	NC	NC	NC	NC	NC	40	1152	2,400	4,000

-

Notes Residential A - residentia

Residential A - residential land-use with garden/accessible soil (home grown produce <10% fruit and vegetable uptake (no poultry)), also includes childcare centres, preschools and primary schools									
1 - Urban residential/public open space is broadly equivalent to the Residential A, Residential B and Recreational C									
land-use criteria 2 - Generic EIL									
3 - ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability									
4 - Management limits are applied after consideration of relevant ESLs and									
HSLs									
5 - Contaminants only assessed using the SCC (Specific Contaminant Concentration)									
6 - Where the contaminant threshold value set for restricted solid waste (CT2) is exceeded, a TCLP test must be carried out to determine the leachable concentration of that contaminant and the class of waste.									
Contaminant Exceedance Indicators:									
Bold - Indicates exceedance of NEPM (2013) HIL A criteria values for Residential A Land-use									
Italics - Indicates exceedance of NEPM (2013) EIL/ESL criteria values for Urban Residential/Public Open Space									
Land-use									
Double Underline - Indicates exceedance of NEPM (2013) Management Limits for Residential,									
Parkland and Open Space Land-use									
Indicates material is classified as General Solid Waste in accordance with NSW EPA (2014),									
i.e. > CT1 and ≤ SCC1 and ≤ TCLP1									

i.e. > CT1 and \leq SCC1 and \leq TCLP1
Indicates material is classified as Restricted Solid Waste in accordance with NSW EPA
(2014), i.e. \leq CT2 and \leq SCC2 and \leq TCLP2
Indicates material is classified as Hazardous Solid Waste in accordance with NSW EPA
(2014), i.e. > SCC2 and > TCLP2

Acronyms:

TRH	Total Recoverable Hydrocarbons
BTEX	Benzene, Toluene, Ethyl Benzene, Xylene
NEPM (2013) NSW	National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (ammended April 2013)
DECCW (2009)	NSW DECCW, Waste Classification Guidelines, Part 1: Classifying Waste, 2009
NSW EPA (1994)	NSW EPA, Guidelines for Assessing Service Station Sites, 1994
HIL	Health-based Investigation Levels
HSL	Health Screening Levels
BGL	Below Ground Level
EIL	Ecological Investigation Level
ESL	Ecological Screening Levels
NL	Not Limiting

NC	No Criteria	
NT	Not Tested	
ND	Not Detected	

Table 6-8 Results of Laboratory Analysis for PAHs, OPP, PCB and Phenols

			Material Description			PA	H		OPP		
Location	Date Sampled	Filling (F) / Natural (N)	Primary Constituent	Contaminant Observations	Total	B(a) P	B(a)P TEQ (Upper)	Total	Chlor- pyrifos	Total PCB	Phenols
					mg/k g	mg/k g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TB005-1	20/10/2015	F	SILT	CLAY	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB006-1	20/10/2015	Ν	SILT	SAND	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB007-1	20/10/2015	F	GRAVEL	SAND	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB008-1	20/10/2015	Ν	SILT	SAND	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB009-1	20/10/2015	F	SILT	SAND	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB010-1	20/10/2015	Ν	SAND	SILT	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB011-1	20/10/2015	F	SAND	SILT	<0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
TB012-1	20/10/2015	Ν	SILT	CLAY	0.8	<0.1	<0.3	<3.4	<0.2	<1	<0.5
	Guideli	ne Values		SGS PQL	0.80	0.10	0.3	3.4	0.2	1.0	1
NEPM (2013) HILs	for Residential A	Land-Use (HIL A)			300	NC	3	NC	160	1	3,000
NEPM (2013) EIL f	or Urban Resider	ntial/Public Open Sp	bace ¹		NC	NC	NC	NC	NC	NC	NC
NEPM (2013) ESL	³ for Urban Reside	ential/Public Open S	Space ¹ - Course Soil	S	NC	0.7	NC	NC	NC	NC	NC
NEPM (2013) ESL	NEPM (2013) ESL ³ for Urban Residential/Public Open Space ¹ - Fine Soils						NC	NC	NC	NC	NC
NSW EPA (2014) (NSW EPA (2014) General Solid Waste Contaminant Threshold Concentrations (CT1)							250 ⁴	4	< 50 4	288
NSW EPA (2014) F	Restricted Solid W	aste Contaminant	Threshold Concentra	tions (CT2) ⁵	800 4	3.2	NC	1,000 4	16	< 50 ⁴	1152

Notes:

Residential A - residential land-use with garden/accessible soil (home grown produce <10% fruit and vegetable uptake (no poultry)), also includes childcare centres, preschools and primary schools

1 - Urban residential/public open space is broadly equivalent to the Residential A, Residential B and Recreational C land-use criteria

2 - Generic EIL

3 - ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability

4 - Contaminants only assessed using the SCC (Specific Contaminant Concentration)

5 - Where the contaminant threshold value set for restricted solid waste (CT2) is exceeded, a TCLP test must be carried out to determine the leachable concentration of that contaminant and the class of waste.

Contaminant Exceedance Indicators:

Contaminant Exceedance indicators:									
Bold - Indicates exceedance of NEPM (2013) HIL A criteria values for Residential A Land-use									
Italics - Indicates exce	Italics - Indicates exceedance of NEPM (2013) EIL/ESL criteria values for Urban Residential/Public Open Space Land-use								
	Indicates material is classified as General Solid Waste in accordance with NSW EPA (2014), i.e. > CT1 and < SCC1 and < TCLP								
	Indicates material is classified as Restricted Solid Waste in accordance with NSW EPA (2014), i.e. ≤ CT2 and ≤ SCC2 and ≤ TCLP2								
	Indicates material is classified as Hazardous Solid Waste in accordance with NSW EPA (2014), i.e. > SCC2 and > TCLP2								
Acronyms:									
РАН	Polycyclic Aromatic Hydrocarbons								
B(a)P	Benzo(a)Pyrene								
TEQ	Toxic Equivalence Quotient								
РСВ	Polychlorinated Biphenyls								
OCP	Organochlorine Pesticides								
OPP	Organophosphorus Pesticides								
PQL	Practical Quantitation Limit								
NEPM (2013)	National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (ammended April 2013)								
NSW DECCW (2009)	NSW DECCW, Waste Classification Guidelines, Part 1: Classifying Waste, 2009								
NSW EPA (1994)	NSW EPA, Guidelines for Assessing Service Station Sites, 1994								
HIL	Health-based Investigation Levels								
EIL	Ecological Investigation Level								
ESL	Ecological Screening Levels								
NC	No Criteria								
NT	Not Tested								
ND	Not Detected								

Table 6-9 Results of Laboratory Analysis for Organochlorine Pesticides

			Material I	Description					OCP					
Location	Date Sampled	Filling (F) / Natural	Primary Constituent	Contaminant Observations	Tota I	DDT+DDE+D DD	DDT	Aldrin + Dieldrin	Chlor- dane	Endo- sulfa n	Endri n	Hepta -chlor	НСВ	Methox y-chlor
		(N)			mg/k g	mg/kg	mg/k g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k g	mg/kg
TP003-1	14/09/2015	F	SAND	With foreign matter	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP005-1	14/09/2015	F	SAND	Tr Metal Frag	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP006-1	14/09/2015	F	SAND	With foreign matter	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP008-1	14/09/2015	F	SAND	With foreign matter	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP009-1	14/09/2015	N	SAND	-	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP010-1	14/09/2015	N	SAND	-	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP011-1	14/09/2015	F	SAND	With foreign matter	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
TP012-1	14/09/2015	Ν	SAND	-	<3.1	<0.3	<0.1	<0.3	<0.2	<0.3	<0.2	<0.2	<0.1	<0.1
	Guideline Va	alues		SGS PQL	3.1	0.3	0.1	0.3	0.2	0.2	0.2	0.2	0.1	0.1
NEPM (2013) HI	Ls for Residentia	al A Land-Us	e (HIL A)		NC	240	NC	6	50	270	10	6	10	300
NEPM (2013) EI	L for Urban Resid	dential/Publi	c Open Space	I	NC	NC	180 ²	NC	NC	NC	NC	NC	NC	NC
NEPM (2013) ES Soils	NEPM (2013) ESL ³ for Urban Residential/Public Open Space ¹ - Course Soils					NC	NC	NC	NC	NC	NC	NC	NC	NC
NEPM (2013) ES	NEPM (2013) ESL ³ for Urban Residential/Public Open Space ¹ - Fine Soils					NC	NC	NC	NC	NC	NC	NC	NC	NC
NSW EPA (2014) General Solid Waste Contaminant Threshold Concentrations (CT1)					< 50 4	NC	NC	NC	NC	60	NC	NC	NC	NC
NSW EPA (2014 Concentrations (d Waste Cor	ntaminant Thre	shold	< 50 4	NC	NC	NC	NC	240	NC	NC	NC	NC

Notes to Table:

Residential A - residential land-use with garden/accessible soil (home grown produce <10% fruit and vegetable uptake (no poultry)), also includes childcare centres, preschools and primary schools

1 - Urban residential/public open space is broadly equivalent to the Residential A, Residential B and Recreational C land-use criteria

2 - Generic EIL

3 - ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability

4 - Contaminants only assessed using the SCC (Specific Contaminant Concentration)

5 - Where the contaminant threshold value set for restricted solid waste (CT2) is exceeded, a TCLP test must be carried out to determine the leachable concentration of that contaminant and the class of waste.

Contaminant Exceedance Indicators:

Contaminant Exceedance indicators.								
Bold - Indicates exceedance of NEPM (2013) HIL A criteria values for Residential A Land-use								
Italics - Indicates exe	Italics - Indicates exceedance of NEPM (2013) EIL/ESL criteria values for Urban Residential/Public Open Space Land-use							
	Indicates material is classified as General Solid Waste in accordance with NSW EPA (2014), i.e. > CT1 and ≤ SCC1 and ≤ TCLP1 Indicates material is classified as Restricted Solid Waste in accordance with NSW EPA (2014), i.e. ≤ CT2 and ≤ SCC2 and ≤							
	TCLP2 Indicates material is classified as Hazardous Solid Waste in accordance with NSW EPA (2014), i.e. > SCC2 and > TCLP2							
Acronyms:								
PAH	Polycyclic Aromatic Hydrocarbons							
B(a)P	Benzo(a)Pyrene							
TEQ	Toxic Equivalence Quotient							
PCB	Polychlorinated Biphenyls							
OCP	Organochlorine Pesticides							
OPP	Organophosphorus Pesticides							
PQL	Practical Quantitation Limit							
NEPM (2013) NSW DECCW (2009)	National Environment Protection Council, National Environment Protection (Assessment of Site Contamination) Measure, 1999 (ammended April 2013) NSW DECCW, Waste Classification Guidelines, Part 1: Classifying Waste, 2009 NSW EPA, Guidelines for Assessing Service Station Sites,							
NSW EPA (1994)	1994							
HIL	Health-based Investigation Levels							
EIL	Ecological Investigation Level							
ESL	Ecological Screening Levels							
NC	No Criteria							
NT	Not Tested							

Not Detected

ND

Table 6-10 Results of Laboratory Analysis for Asbestos in Soil

Sample ID	Asbestos ID	NEPM [4] ACM>7mm	NEPM [4] ACM,7mm or FA/AF	NEPM [4] Asbestos ww%
AS-1	Chrysotile Asbestos Fibres Detected in 3X2mm cement sheet fragment	None	0.0115 g	0.001
AS-2	Chrysotile Asbestos Detected	-	-	-
NEPM 2013 HIL A	Asbestos Containing Material (%w/w)		0.01	
Residential with garden / accessible	Friable Asbestos (as Asbestos in Soil) (%w/w)			
soil			0.001	
Notes to Table				

Bold indicates exceedance of Guideline

6.3 Quality Assurance

A duplicate sample QA1 and triplicate sample QA2 were prepared from TB009-1 with the analysis of TPH, BTEX, PAH, OC, OP and 8 heavy metals undertaken on the both quality assurance samples. The duplicate sample were analysed by SGS environmental and the QA2 triplicate sample sent to Envirolab laboratories. The Relative Percentage of Difference (RPD) values between the primary and duplicate samples laboratory analysis results were calculated. According to the Table 6-11, a maximum RPD value of 46% was calculated based on the obtained results for heavy metals. RPD value of 164% has been calculated for Mercury as the two laboratories have different Limit of Reporting (LOR) for this analysis. The RPD values for TPH, BTEX, PAH, OC and OP could not be calculated as the concentrations were below the laboratory limits of reporting.

$$RPD\% = \frac{[Cp - Cd]}{Cp + Cd} \times 200$$

Where:

Cp = Primary sample Cd = Duplicate Sample

Table 6-11 Summary of Analytical Results Quality Assurance, results in mg/kg

Analysis	TB009- 1	QA1	QA2	RPD% (QD1 and TB009-1)	RPD% (QD2 and TB009-1)	RPD% (QD1 and QD2)
Arsenic	<3	<3	<4	0	29	29
Cadmium	<0.3	<0.3	<0.4	0	29	29
Chromium	6.3	6.5	5	3	23	26
Copper	1.5	1.6	1	6	40	46
Lead	4	4	4	0	0	0
Mercury ²	<0.01	<0.01	<0.1	0	164	164
Nickel	0.8	0.8	<1	0	22	22
Zinc	43	43	42	0	2	2
TPH, BTEX, PAH, OC, OP, and PCB	ND^1	ND	ND	ND	ND	ND

Notes to Table

1. ND- Not Detected (under limit of reporting)

2. Disagreement in the results are due to the different LOR of each laboratory

A zero PRD indicates absolute agreement of the results between the first and second detectors while a 200% PRD demonstrates total disagreement in analytical laboratory results. Elevated PRD values are common where concentrations are close to the detection limit.

In addition, SGS Laboratory has undertaken internal quality assurance testing which also involves a review of the QA results and interpretation. Results are contained within the laboratory report sheets and are attached to this report.

In addition, Trip Blank and Trip Spike samples were prepared by SGS laboratory and were hold accompanying other samples during the site investigation. The results of the laboratory testing of the Trip Blank and Trip Spike samples were within the acceptable limits. The Trip Blank recoveries ranged from 92% to 100% which is within the acceptable limit of 60% to 100%.

The review of internal QA indicates that sufficient internal QA was undertaken for most analytes and that, Recovery of Surrogates, Recovery of Spikes, and Relative Percentage Differences for Duplicates, Triplicate results and Holding times where within acceptance criteria as defined by SGS Environmental.

The data obtained from this testing is considered accurate and the results can be relied on to the for the purpose of the preliminary assessment.

7 Comments and Recommendations

7.1 Preliminary Contamination Assessment (PCA)

The objectives of the PCA was to identify any past or present potentially contaminating activities and to provide a preliminary assessment of the overall site contamination. The PCA comprised an assessment of the available historical data, site investigation and limited laboratory analysis.

This section summarises the investigation findings and provides comment and recommendation regarding the contamination state of the site and requirements for further assessment.

7.1.1 Criteria for Contamination Assessment

The current assessment criteria used in NSW to evaluate soil analytical results are based on the NSW DEC Guidelines for the NSW Site Auditor Scheme 2nd Edition 2006 [5] and National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 2013 [4], and was used as the criteria for the assessment of the soil on site. Schedule B (1) Guideline on Investigation Levels for Soil and Groundwater provides limits on investigation concentrations for contaminants based on human health risk and ecological assessment and certain exposure scenarios due to site use.

The proposed site use is residential and therefore the following guidelines have been adopted:

> Health Investigation Levels (HIL) "Residential A", Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

7.1.2 Areas of Environmental Concern (AEC)

- > Potential contamination from the previous medium scaled industrial farming activities and associated contaminants resulting from removal of the farm structures and large industrial sheds
- Potential contamination of the imported filling used for construction of the building platform of the former farm sheds;
- Potential contamination associated with stockpiles across the site, dumping of household items, and surficial landscape disturbances;
- > Potential asbestos contamination from the abandoned residential structure within the eastern portion of the NP.
- > Potential asbestos contamination from demolition works of the previous two residential dwellings within the eastern portion of the NP.

Table 3-1 shows the areas with environmental significance observed during the site investigation. The locations of the observations are referenced in Drawings GE-001 attached in Appendix A.

In order to provide preliminary comment on the identified AEC's a limited program of targeted intrusive testing was undertaken.

The fieldwork was based on observed conditions and comprised surface sampling at targeted locations based on the areas identified by desktop study. Samples were collected at test bore locations with sample IDs showing the test bore numbers and the locations are shown on Drawings GE-002 attached in Appendix A. In addition, the following samples were collected and tested based on the site observations (Refer to the Drawing GE-002 for location):

- > AS-1 sample was obtained from the disturbed ground areas resultant from the demolition of the former residential dwelling located at OI No. 5 Table 3-1. The sample was tested for asbestos fibre detections.
- > AS-2 sample obtained from small fibrous fragment consistent with the Cementous sheeting used in the abandoned residential dwelling and remaining shed/garage (OI No. 4 Table 3-1) and tested for asbestos detection.

Additional test bores were drilled through the three of the site stockpiles: OI No 1, 6 and 8 to identify the material compositions. The assessment revealed that the assessed stockpiled material generally comprises topsoil of silty compositions with high organic content which did not contain any foreign matter.

7.1.3 Analytical Results

The complete analytical results for soil and water samples are contained in Appendix C. A summary of the results were presented in Section 6.2.2 and presented below:

7.1.3.1 Heavy Metals

Appraisal of the results indicated that the levels of metals within the samples tested were below the threshold limits as detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 2013 [4] "Residential A".

7.1.3.2 Total Petroleum Hydrocarbon (TPH)

Appraisal of the results indicated PAH's were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 2013 [4] "Residential A".

7.1.3.3 Polycyclic Aromatic Hydrocarbon (PAH)

Appraisal of the results indicated PAH's were below the threshold limits as detailed in the National Environment Protection Measure for the Assessment of Site Contamination, 2013 [4] "Residential A".

7.1.3.4 Organophosporous & Organochlorine Pesticides (OPP/OCP) & Polychlorinated Biphenyls (PCB)

Appraisal of the results indicated that the levels of OPP, OCP and PCB within the samples tested were below the threshold limits as detailed in National Environment Protection Measure for the Assessment of Site Contamination, 2013 [4] "Residential A".

7.1.3.5 Asbestos Material

The result of analysis for sample AS-1 obtained from the fibrous material used in the Cementous sheets used in the abandoned residential dwelling and adjacent shed/garage (OI No. 4Table 3-1) for asbestos ID was positive and indicated that the sample contains Chrysotile Asbestos.

The sample obtained from the disturbed areas at the location the former residential structure (AS-2) was tested for detection of Fibrous asbestos (FA) and asbestos fines (AF) and asbestos containing material (ACM). The analysis results indicated that the sample did not contain ACM fragments but contained 0.001 %w/w of AF/FA (<7mm).

7.1.4 <u>Discussion</u>

Review of the historical aerial photographs revealed that numerous sheds associated with farming activity were constructed on site during the 1950s and 1960s. These structures were removed from the site afterwards and the southern portion of the site appears undeveloped until the recent rural developments around 2000 that in general form the current site conditions. Four residential structures and associated farm shed/garages were also constructed within the eastern portion of the NP and three of these structures have been demolished.

Furthermore, the review of the historical title deed searches reveals that Lots 1 and 2 in DP 1000694 and the southern portion of the Lot 3 DP1000594 were owned by a poultry farmer during the period between 1954 and 1969. The presence of sheds in this portion of the site observed in 1954 and 1965 historical aerial photographs coincides with the ownership of the poultry farmer and the sheds were potentially used for chicken farming activities.

There was no evidence that the site has been subject to any significant filling or disturbance with the exception of the filling placed for the construction of the large shed along the western boundary of the site (OI No.03 Table 3-1) and filling placed to the east of the Lot 4 DP 1000694 (OI No.02 Table 3-1).

The areas with environmental significances were identified based on the results of the desktop assessment and site investigation. The targeted sampling and analysis was undertaken to further characterise the contamination status of the identified areas of concern. The following summarises the ideology behind the targeted sampling:

- > Sample TB003-1 obtained from surficial filling observed in the test bore.
- > Sample TB005-1 from the filling material placed on site and observed in June 2005 aerial photograph (OI No. 02 of the Table 3-1).
- > Test bore TB006 was drilled at the location of the site former industrial shed potentially associated with chicken farming activities. Sample TB006-1 was obtained from surface topsoil material to assess the impact of the previous activities on natural soil profile.
- > Sample TB008-1 was obtained from the test bore drilled adjacent to the surface disturbances associated with construction of a farm dam within the southern portion of the Lot 1 DP 1000694.
- > Test bore TB009 was drilled at the location of the site former large industrial shed fill platform with TB009-1 sample obtained from the fill material.
- > Sample TB010-1 was obtained from surficial material at the location of the former residential dwellings located within the eastern portion of the NP.
- > Test bore TB011 was drilled at the location of the former dwelling with sample TB011-1 obtained from the surficial filling.
- > Sample TB012-1 was obtained at the location of former farm shed associated with demolished former dwelling.
- > Sample AS-21 collected from disturbed areas at the location of the former dwelling and AS-2 from fibrous material used in construction of the abandoned dwelling and shed/garage.

The result of the laboratory analysis were recorded below the laboratory limits of reporting (LOR) and/or acceptable thresholds.

Asbestos was detected in the AS-2 sample which indicates that asbestos containing construction material are present in the abandoned residential dwelling and she located within the eastern portion of the NP.

Asbestos fibres (AF/FA) were detected in the sample obtained from surficial soils of the disturbed area at the location of former dwelling OI No. 5 Table 3-1. Presence of asbestos fibres in the soil is judged to be associated with poor demolition practice of the former residential structure.

7.1.5 PCA Conclusion

This report represents the findings of PCA undertaken on the subject site (refer to the Section 2 for site identification details). The site history indicates that the Site has generally been used for farming activities and residential dwellings.

Targeted soil sampling and analysis reported no signs of gross contamination and analytical results concentrations below the adopted criteria.

Asbestos containing construction material has been identified in existing abandoned dwelling and shed/garage shed OI No.4 Table 3-1. In addition, asbestos FA/AF fibres were detected at the location of the former residential dwelling OI No.5 Table 3-1. The following must be undertaken to eliminate the risk associated with the asbestos containing material:

- > Removal of the asbestos containing material used in the existing abandoned residential structure and shed/garage OI No.4 Table 3-1 by an accredited hygienist.
- > Removal of the asbestos fibre contaminated surficial soils at the location of the former residential structure and validation by an accredited hygienist.

Comparison of the analytical testing undertaken to threshold limits detailed in National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999 [4] "Residential A", indicates no gross contamination has been identified on the site.

Based on the site inspection, the desktop study and laboratory analysis it is suggested that the overall potential risk of contamination at the site would be low and contamination is not considered to pose a constraint to the proposed development.

7.2 Aggressivity Assessment

This section provides assessment criteria to assess the exposure classification for a steel piles and concrete piles and is considered applicable for other buried concrete structures.

The samples were collected and submitted to a NATA accredited laboratory to be analysed for Resistivity, pH, Sulphate and Chloride to determine the aggressivity potential of the soil with respect to steel piles and buried concrete.

7.2.1 Exposure to Steel Piles

The results were compared to the following Table 6.5.2(C) in Section 6 of Australian Standard (AS) 2159 - 2009: Piling Design and Installation [3]. A soil condition B for low permeability soils (such as silts and clay soils) or all soils above groundwater were adopted for exposure classification criteria.

The classification system is presented in Table 7-1 below.

Table 7-1 Exposure Classification for Steel Piles in Soil

рН	Chlorides (Cl) in Soil (ppm)	Resistivity (Ωcm)	Exposure Classification Soil Condition A	Exposure Classification Soil Condition B
>5	<5,000	>5,000	Non-Aggressive	Non-aggressive
4-5	5,000-20,000	2,000-5,000	Mild	Non-aggressive
3-4	20,000-50,000	1,000-2,000	Moderate	Mild
<3	>50,000	<1,000	Severe	Moderate

Based on the summary of the analytical results presented in Table 6-5 the pH values vary between 4.4 and 5.3 which correlates to an Exposure Classification of all the samples as *non-aggressive*. The chloride results varied are below 5,000 mg/kg, which also classifies all the samples as *Non-aggressive*. The resistivity for the majority of the results are above 5,900 ohm.cm and can be classified as *Non Aggressive*.

7.2.2 Exposure to Concrete Piles

The results were compared to the following Table 6.4.2(C) in Section 6 of Australian Standard (AS) 2159 - 2009: Piling Design and Installation [3].

Based on the soil composition and subsurface profile encountered, Soil Condition B for low permeability soils (such as silts and clay soils) or all soils above groundwater were adopted for exposure classification criteria.

The classification system is presented in Table 7-2 below.

Table 7-2	Exposure Classification for Concrete Piles in Soil
-----------	--

рН	Sulfates (SO₄) in Soil (ppm)	Exposure Classification: Soil Condition A	Exposure Classification: Soil Condition B
>5.5	<5,000	Mild	Non-aggressive
4.5- 5.5	5,000-10,000	Moderate	Mild
4-4.5	10,000-20,000	Sever	Moderate
<4	>20,000	Very Severe	Severe

The summary of the analytical results presented in Table 6-5.

On the basis of the sulfate results of the samples collected, all samples can be classified as *non-aggressive*. With consideration to the pH results: samples classified as moderate to non-aggressive.

The indication of the concrete pile exposure classifications are indicated in Table 6-5.

7.3 Geotechnical Assessment

7.3.1 Earthworks

The extent of the earthworks has not been defined at this stage, however, considering the gentle site topography minor modification is expected with the exception of the excavations of proposed detention basins.

Minimal filling is anticipated to be placed on site and will be dependent on the volume of the spoil generated from excavations and final design levels, however, this might be subject to change following the preparation of the earthworks plan considering the excavation surplus material.

7.3.1.1 Site Preparation

Prior to bulk earthworks, the Contractor shall establish, and maintain the integrity of site security to prevent unauthorised access. The site shall be cleared of any foreign matter or unsuitable material including but not limited to:

- > vegetation or organic matter;
- > topsoil, fill and material heavily affected by roots; and
- > any scattered waste or dumped materials (as described in Section 7.1.5 of this report).

Deleterious materials should be disposed of at a licenced waste facility, and stripped topsoils should be stockpiled for re-use where suitable. Topsoil stockpile material presence on site could also be used for landscaping along with the stripped topsoil. Topsoils were generally encountered in the order of 100-200 mm in thickness.

The filling stockpiles encountered at two locations of OI NO. 2 and 3 Table 3-1 would be defined as uncontrolled, not placed in accordance with the requirements specified in Australian Standard AS 3798-2007: Guidelines on Earthworks for Commercial and Residential Structures [6]. This material must be removed and could be used as site filling if required and placed in accordance to the requirements of this report (Section 7.3.3).

Following site preparation including stripping and stockpiling of the topsoil materials, appropriate erosion control and adequate drainage should be maintained as per as GCC guidelines.

7.3.1.2 Drainage and Erosion Control

Prior to earthworks, appropriate site surface drainage and other measures shall be implemented to prevent ponding and scouring during the construction. These measures should include temporary drains, surface grading along with erosion and sediment control, and should be appropriately reinstated following the construction.

Emerson class testing provides an indication of dispersive nature of the site soils and erodibility. The results of Emerson class testing indicated that all the samples (100%) are regarded as susceptible to erosion (Class 2). Good moisture control and compaction is required to use these material where exposed to water. Provision of liner or importation of non-erosion susceptible material for the construction of the detention ponds must be considered.

A significant reduction in the risk of erosion following moisture / density control during the earthworks is expected. Nonetheless, the soils should be covered by a suitable thickness of topsoil to further reduce the risk of erosion. Suitable vegetation protection should be established together with the provision of adequate drainage and where the soils are exposed, other appropriate protection measures should be employed.

All collected stormwater shall be appropriately detained in on-site storage or detention basins and discharged in a controlled manner. This should be conducted in accordance with the GCC requirements.

7.3.2 Excavations

7.3.2.1 Excavatability

The extent of excavations across the site is not available at this stage but is expected to comprise excavation for the detention basins and potentially excavations for the proposed roads to the design subgrade levels.

Variations in the final design levels of the proposed development are likely and as such the following comments regarding the excavatability must be confirmed once the design is completed.

The siltstone bedrock was only encountered in two test bores TB007 and TB010 drilled along the eastern boundary of the site at depths of 2.1 and 1.9m BGL respectively. The siltstone bedrock was assessed to be extremely low strength and extremely affected by weathering processes. The depth of the bedrock to ground surface is expected to increase towards west and north-west.

Excavations to the depths shown on the engineering logs are expected to be readily undertaken using conventional earthmoving equipment such as backhoe and excavator and as such excavatability is not expected to restrict the construction of the development.

Groundwater was encountered in one test bore TB003 at 1.5m BGL which was drilled adjacent to the f drainage channel. Where the depths of the excavations are shallower than the recorded free standing groundwater levels, dewatering is not expected to be required. However, the groundwater level is influenced by climatic changes and rainfall conditions.

7.3.3 <u>Filling</u>

Where filling required, it be placed and compacted in accordance with AS 3798-2007 *Guidelines on Earthworks for Commercial and Residential Development* [6] and the following recommendations.

7.3.3.1 Methodology

It is expected that construction of fill platforms during the bulk earthworks, which would be suitable to support structural loads associated with residential development, would include the following.

- > Removal of any existing fill, topsoil or deleterious soils from areas where fill is to be placed. Any unsuitable material to be removed.
- Benching of the exposed subgrade slope in the area where fill is to be placed if slopes are steeper than 8H:1V (approximately 7°).
- > Proof rolling of the exposed subgrade to detect any weak or deforming areas of subgrade that should be excavated and replaced with compacted fill.
- > Placement of fill in uniform horizontal layers with compaction of each layer to a minimum dry density ratio of 95% Standard Compaction (Australian Standard AS 1289 Clause 5.1.1) at moisture contents of in the order of 90-110% of SOMC or ±2% but generally as close to Standard Optimum Moisture Content (SOMC) as practical. Over compaction should be avoided.
- > Within the road alignment, subgrade formation preparation should be in accordance with Section 0.

All fill should be battered at a slope of 2H:1V (or preferably flatter) and temporary erosion control should be provided as per GCC requirements. To prevent erosion in the long term, provision of protection by vegetation and with the provision of adequate drainage is also required. It would be recommended, where possible, to provide batter slopes of 3H:1V for long term maintenance and to reduce the risk of erosion. Where a batter of 2H:1V is not possible, the filling support must be engineer designed.

7.3.4 Footings Recommendations and Founding Conditions

7.3.4.1 Site Classification

It must be noted that the site classification presented hereunder are applicable to residential single dwellings, townhouse or similar structure.

Australian Standard AS 2870-2011 [7] establishes performance requirements and specific designs for common foundation conditions as well as providing guidance on the design of footing systems using engineering principles based on site classifications as defined by the standard.

Reactive sites are sites consisting of clay soils that swell on wetting and shrink on drying, resulting in ground movements that can damage lightly loaded structures. The amount of ground movement is related to the physical properties of the clay and environmental factors such as climate, vegetation and watering. A higher probability of damage can occur on reactive sites where abnormal moisture conditions occur, which is defined in AS 2870.

The laboratory shrink/swell testing conducted indicates that the tested site soils are slightly to moderately reactive with the shrink swell index values ranging between 0.5 to 3.2%. Based on the soil profiles encountered in the test bores, and in accordance with AS 2870-2011, classifications of Class M (Moderately Reactive) is expected for the site in existing conditions subject to placement of all foundations below any uncontrolled filling, topsoil or highly organic alluvial material. Placement of filling on site may result in a higher site classification such as Class H1 (highly reactive).

7.3.5 Pavements

Geotech Solutions

It is understood that the construction of internal access roads are proposed as indicated in the SLP plans by Bannister & Hunter Pty Ltd.

Pavement design has been performed in accordance with the Austroads AGPT02-12 Guide to Pavement Technology [8] with the pavement thickness design provided employing flexible pavement materials.

The pavement design presented in this report an indication only and must be confirmed following the completion of the final subdivision design and provision of the design traffic values by GCC.

7.3.5.1 Design Subgrade

Based on the subsurface conditions encountered in the test bores, subgrade conditions across the site and current conditions (prior to earthworks) are likely to generally comprise residual sandy clays and likely sand, silt and clay alluvial compositions.

The results of the laboratory CBR testing indicate soaked CBR values in the order of 1.5 to 3.0% for the residual clays present at subgrade level (prior to any regrading activities) when compacted to 100% relative density using standard compactive effort.

Based on the results of the laboratory CBR testing a design subgrade CBR of 2.0 and 3% would be recommended for the subgrade material. This is based on the assumption that the subgrade is compacted to 100% standard dry density and incorporating the surcharge load of the future pavement.

7.3.5.2 Design Traffic

Design traffic has been assumed in accordance with the previous experience and must be confirmed by GCC project manager for the final design. The pavement design has been undertaken for Design Traffic of 6 X 10^5 DESA (Design Equivalent Standard Axles) for local roads and 7 X 10^4 DESA for access roads.

7.3.5.3 Pavement Composition

Preliminary pavement designs have been conducted in accordance with Austroads AGPT02-12 *Guide to Pavement Technology Part 2: Pavement Structural Design* [8].

It should be noted that the layer thicknesses detailed are minimum thicknesses regardless of construction tolerances.

Pavement compositions with a clay subgrade are detailed below in Table 7-3.

Table 7-3 Pavement Composition (CBR 10%)

Basecourse (mm) 150 150 150 150 Subbase (mm) ⁽¹⁾ 410 300 270 190 Total Thickness (mm) 600 490 460 380	Road Category	Local Roads CBR2%	Local Roads CBR3%	Access Roads CBR2%	Local Roads CBR3%
Subbase (mm) ⁽¹⁾ 410 300 270 190 Total Thickness (mm) 600 490 460 380	Wearing Surface (mm)	40 (AC10) ⁽¹⁾	40 (AC10) ⁽¹⁾	40 (AC10) ⁽¹⁾	40 (AC10) ⁽¹⁾
Total Thickness (mm)600490460380	Basecourse (mm)	150	150	150	150
(mm)	Subbase (mm) (1)	410	300	270	190
		600	490	460	380
Design Traffic (ESA) $6 \times 10^{\circ}$ $6 \times 10^{\circ}$ 7×10^{4} 7×10^{4}	Design Traffic (ESA)	6 X 10⁵	6 X 10⁵	7 X 10 ⁴	7 X 10 ⁴

Notes to table:

(1) The sub base should be extended beneath the kerb and to a minimum of 150 mm beyond the rear face of the kerb profile.

The requirement for a select layer should be assessed at the time of construction and likely to be required considering the previous experience in the area. This will also be dependent on climatic conditions prior to and during construction and the ability to provide adequate drainage. Considering the high silt layer content of the site material, loss of strength and boggy conditions are likely to occur following a high rainfall period. In-situ stabilisation of the subgrade material or placement of construction platform is likely to be required depending on the weather conditions.

7.3.5.4 Materials and Compaction Specification

Pavement materials and compaction requirements for new pavement construction shall conform to the relevant Council Specifications and the following requirements.

Pavement Course	Material Specification	Compaction Requirements ¹
Wearing Course	Material complying with Council specifications	As per supplier specifications
Basecourse High quality crushed rock	Material complying with Council specifications and a CBR ≥ 80% and PI<8%	Min 98% Modified (AS1289 5.2.1) or Min 102% Standard (AS1289 5.1.1)
Subbase Subbase quality crushed rock	Material complying with Council specifications and a CBR ≥ 30% PI<12%	Min 98% Modified (AS1289 5.2.1) or Min 102% Standard (AS1289 5.1.1)
Subgrade or replacement (if required)	As defined in Table 7-3	Min 100% Standard (AS1289 5.1.1)

 Table 7-4
 Pavement material specification and compaction requirements

Notes:

1- GCC will require the modified levels

7.3.5.5 Subgrade Preparation

Subgrades should be prepared in accordance with appropriate Council guidelines and the following general recommendations.

- > Removal topsoil, highly organic alluvial and filling with excavation (where required) to subgrade formation level, with the spoiling of any deleterious material;
- > Elimination of abrupt changes between subgrade conditions, by methods such as selective grading or mixing of material to provide a transition between material types, and moisture/density control of subgrade compaction.
- > Proof rolling of the exposed subgrade with a heavy (minimum 10 tonne static) roller with any soft or weak areas detected to be excavated and replaced with a suitable compacted fill or subgrade replacement. To prevent zones of variable permeability, which may trap moisture and lead to subgrade deformation, material of similar consistency to the subgrade should be utilised in the case where localised replacement is required.
- > Compaction of the subgrade filling or select shall be to a minimum dry density ratio of 100% Standard Compaction (Australian Standard AS 1289 Clause 5.1.1) in layers of not greater than 250 mm loose thickness and generally within 60-90% of SOMC.
- > Protection of the subgrade to prevent any excessive wetting or drying.

It is recommended that trafficking of the subgrade be minimised or avoided (where possible) during construction to prevent the permanent deformation of the subgrade. The boxed road alignment should not be used as a haul road during construction, with footpath areas outside the road alignment offering alternate areas for construction traffic.

7.3.5.6 Expansive Soils

Geotech Solutions

The subgrade site material Liquide Limit ranging from 27 to 44% with the Plasticity Index ranging from 12 to 30% based on the laboratory testing on the site selective soil samples. In addition, based on the onsite assessment and CBR test results swell of 2.0 to 5.0%, it is understood that the subgrade clays have low to very high swell potential as defined in Table 5.2 of Austroads [8]. The subgrade would have substantial potential for volume change due to moisture variations and strategies to minimise volume change as outline in clause 5.3.5 of Austroads [8] should be employed.

The specific considerations in relation to expansive soils should include but not limited to:

- > Specification of a moisture content range for preparation of the subgrade;
- > The need for subsoil drainage to not be located in the expansive soils;
- > The need for a low permeability lower subbase / select layer;
- > Recommendation for sealed shoulders and impermeable verge material;
- > Recommend appropriate construction techniques; and
- > Reduction of the volume expansion potential of the expansive soils by lime stabilisation.

7.3.5.7 Subsoil Drainage

It is recommended that subsoil drainage be installed at subgrade level along both sides of constructed pavements where the road is in cut, to intercept any subsurface flows. Detailing of subsoil drainage should be in accordance with Austroads 2012 [8] taking into consideration the presence of moderately to highly expansive soils.

The subgrade shall be constructed with sufficient cross fall (a minimum of 3%) to assist with any moisture entering the pavement not becoming trapped. The drains should be located below or behind the kerb to

8 Conclusions

Based on the site inspection, the desktop study and limited testing it is suggested that the overall potential risk of contamination at the site would be low and contamination is not considered to pose a constraint to the proposed residential development. Removal of asbestos containing material by an accredited hygienist is required and the affected area must be validated following the removal. Screening and off-site disposal of dumped anthropogenic materials within fill material and localised areas across the site will also be required.

Excavatability is unlikely to provide difficulties to larger excavation equipment and excavation could be undertaken to the depths shown on the engineering logs with conventional equipment.

Based on the soil profiles encountered in the test pits and boreholes, and in accordance with AS 2870-2011, a classifications of Class M Moderately Reactive is expected for the site provided that all the footings are founded below any topsoil or uncontrolled fill. Placement of filling on site may result in a higher site classification such as Class H1 (highly reactive).

Pavement thickness designs for existing subgrade conditions are provided based on the assumed design traffic and expected subgrade conditions in Section 7.3.5 of this report.

9 Limitations

Cardno have performed investigation and consulting services for this project in general accordance with current professional and industry standards. The extent of testing was limited to discrete test locations and variations in ground conditions can occur between test locations that cannot be inferred or predicted.

A geotechnical consultant or qualified engineer shall provide inspections during construction to confirm assumed conditions in this assessment. If subsurface conditions encountered during construction differ from those given in this report, further advice shall be sought without delay.

Cardno, or any other reputable consultant, cannot provide unqualified warranties nor does it assume any liability for the site conditions not observed or accessible during the investigations. Site conditions may also change subsequent to the investigations and assessment due to ongoing use.

This report and associated documentation was undertaken for the specific purpose described in the report and shall not be relied on for other purposes. This report was prepared solely for the use by TGL Pty Ltd and any reliance assumed by other parties on this report shall be at such parties own risk.

References

- [1] NSW Government, "State Environmental Planning Policy No 55 Remediation of Land," July 2014.
- [2] Trade & Investment, "Gosford-Lake Macquarie Special," 2015.
- [3] Australian Standard AS2159-2009, "Piling Design & Installation," Standards Australia, 2009.
- [4] National Environment Protection (Assessment of Site Contamination) Measure 1999, "Schedule B1 Guidelines on Investigation Levels For Soil and Groundwater," National Environment Protection Council, 16 May 2013.
- [5] NSW DEC, "Guidelines for the NSW Site Auditor Scheme (2nd Edition)," Department of Environment and Conservation NSW, April 2006.
- [6] Australian Standard AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Structures".
- [7] Australian Standard AS2870-2011, "Residential Slabs and Footings," Standards Australia, 2011.
- [8] Austroads AGPT02-12, "Guide to Pavement Technology Part 2: Pavement Structural Design".

Proposed Residential Development, Bakali Rd, Forresters Beach

APPENDIX

Proposed Residential Development, Bakali Rd, Forresters Beach

APPENDIX

ENGINEERING LOGS

Explanatory Notes

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS1726-1993 Geotechnical Site Investigations. Material descriptions are deduced from field observation or engineering examination, and may be appended or confirmed by in situ or laboratory testing. The information is dependent on the scope of investigation, the extent of sampling and testing, and the inherent variability of the conditions encountered.

Subsurface investigation may be conducted by one or a combination of the following methods.

Method		
Test Pitting: e	xcavation/trench	
BH	Backhoe bucket	
EX	Excavator bucket	
Х	Existing excavation	
Natural Expos	sure: existing natural rock or soil exposure	
Manual drilling	g: hand operated tools	
HA	Hand Auger	
Continuous sa	ample drilling	
PT	Push tube	
Hammer drilli	ng	
AH	Air hammer	
AT	Air track	
Spiral flight au	uger drilling	
AS	Large diameter short spiral auger	
AD/V	Continuous spiral flight auger: V-Bit	
AD/T	Continuous spiral flight auger: TC-Bit	
Hollow flight a	auger drilling	
HFA	Continuous hollow flight auger	
Rotary non-co	ore drilling	
WS	Washbore (mud drilling)	
RR	Rock roller	
Rotary core d	rilling	
HQ	63mm diamond-tipped core barrel	
NMLC	52mm diamond-tipped core barrel	
NQ	47mm diamond-tipped core barrel	
Concrete cori	ng	
DT	Diatube	

Sampling is conducted to facilitate further assessment of selected materials encountered.

Sampling method			
Disturbed sampling			
В	Bulk disturbed sample		
D	Disturbed sample		
ES	Environmental soil sample		
Undisturbed sampling			
SPT	Standard Penetration Test sample		
U	Thin wall tube 'undisturbed' sample		
Water samples	3		
EW	Environmental water sample		

Field testing may be conducted as a means of assessment of the in situ conditions of materials.

Field testing			
SPT	Standard Penetration Test (blows/150mm)		
HP/PP	Hand/Pocket Penetrometer		
Dynamic	Dynamic Penetrometers (generally blows/150mm)		
	DCP	Dynamic Cone Penetrometer	
	PSP	Perth Sand Penetrometer	
MC	Moisture Content		
VS	Vane Shear		
PBT	Plate Bearing Test		
PID	Photo I	onization Detector	

If encountered, refusal (R) or virtual refusal (VR) of SPT or dynamic penetrometers may be noted.

The quality of the rock can be assessed be the degree of fracturing and the following.

Rock quality description		
TCR	Total Core Recovery (%)	
	(length of core recovered divided by the length of core run)	
RQD	Rock Quality Designation (%)	
	(sum of axial lengths of core greater than 100mm long divided by the length of core run)	

Notes on groundwater conditions encountered may include.

Groundwater

Not Encountered	Excavation is dry in the short term
Not Observed	Water level observation not possible
Seepage	Water seeping into hole
Inflow	Water flowing/flooding into hole

Perched groundwater may result in a misleading indication of the depth to the true water table. Groundwater levels are also likely to fluctuate with variations in climatic and site conditions.

Notes on the stability of excavations may include.

Excavation conditions		
Stable	No obvious/gross short term instability noted	
Spalling	Material falling into excavation (minor/major)	
Unstable	Collapse of the majority, or one or more face of the excavation	

Explanatory Notes: General Soil Description

The methods of description and classification of soils used in this report are based on Australian Standard AS1726-1993 Geotechnical Site Investigations. In practice, a material is described as a soil if it can be remoulded by hand in its field condition or in water. The dominant component is shown in upper case, with secondary components in lower case. In general descriptions cover: soil type, plasticity or particle size/shape, colour, strength or density, moisture and inclusions.

Pocket

In general, soil types are classified according to the dominant particle on the basis of the following particle sizes.

Soil Classification		Particle Size
CLAY		< 0.002mm
SILT		0.002mm 0.075mm
SAND	fine	0.075mm to 0.2mm
	medium	0.2mm to 0.6mm
	coarse	0.6mm to 2.36mm
GRAVEL	fine	2.36mm to 6mm
	medium	6mm to 20mm
	coarse	20mm to 63mm
COBBLES		63mm to 200mm
BOULDERS		> 200mm

Soil types are qualified by the presence of minor components on the basis of field examination or the particle size distribution.

Description	Percentage of minor component
Trace	< 5% in coarse grained soils
	< 15% in fine grained soils
With	5% to 12% in coarse grained soils
	15% to 30% in fine grained soils

The strength of cohesive soils is classified by engineering assessment or field/laboratory testing as follows.

Strength	Symbol	Undrained shear strength
Very Soft	VS	< 12kPa
Soft	S	12kPa to 25kPa
Firm	F	25kPa to 50kPa
Stiff	St	50kPa to 100kPa
Very Stiff	VSt	100kPa to 200kPa
Hard	Н	> 200kPa

Cohesionless soils are classified on the basis of relative density as follows.

Relative Density	Symbol	Density Index
Very Loose	VL	< 15%
Loose	L	15% to 35%
Medium Dense	MD	35% to 65%
Dense	D	65% to 85%
Very Dense	VD	> 85%

The moisture condition of soil is described by appearance and feel and may be described in relation to the Plastic Limit (PL) or Optimum Moisture Content (OMC).

Moisture condition and description			
Dry	Cohesive soils: hard, friable, dry of plastic limit. Granular soils: cohesionless and free-running		
Moist	Cool feel and darkened colour: Cohesive soils can be moulded. Granular soils tend to cohere		
Wet	Wet Cool feel and darkened colour: Cohesive soils usually weakened and free water forms when handling. Granular soils tend to cohere		
The plasticity of cohesive soils is defined as follows.			
	,		
Plastic	city Liquid Limit		
	cityLiquid Limitlasticity≤ 35%		
Low pl			
Low pla Mediur	lasticity ≤ 35%		
Low pla Mediur High pl	Iasticity $\leq 35\%$ m plasticity $> 35\% \leq 50\%$	llows.	
Low pla Mediur High pl	Iasticity $\leq 35\%$ m plasticity> $35\% \leq 50\%$ plasticity> 50% tructure of the soil may be described as for	llows.	
Low pla Mediur High pl The str	Iasticity $\leq 35\%$ m plasticity> $35\% \leq 50\%$ plasticity> 50% tructure of the soil may be described as for		

The structure of soil layers may include: defects such as softened zones, fissures, cracks, joints and root-holes; and coarse grained soils may be described as strongly or weakly cemented.

Irregular inclusion of different material

The soil origin may also be noted if possible to deduce.

Soil origin and description		
Fill	Man-made deposits or disturbed material	
Topsoil	Material affected by roots and root fibres	
Colluvial	Transported down slopes by gravity	
Aeolian	Transported and deposited by wind	
Alluvial	Deposited by rivers	
Lacustrine	Deposited by lakes	
Marine	Deposits in beaches, bays and estuaries	
Residual	Developed on weathered rock	

The origin of the soil generally cannot be deduced on the appearance of the material only and may be determined based on further geological evidence or other field observation.

Explanatory Notes: General Rock Description

The methods of description and classification of rocks used in this report are based on Australian Standard AS1726-1993 Geotechnical Site Investigations. In practice, if a material cannot be remoulded by hand in its field condition or in water, it is described as a rock. In general, descriptions cover: rock type, grain size, structure, colour, degree of weathering, strength, minor components or inclusions, and where applicable, the defect types, shape, roughness and coating/infill.

Sedimentary rock types are generally described according to the predominant grain size as follows.

Rock Type	Descriptio	on					
CONGLOMERATE	Rounded gravel sized fragments						
	(>2mm) cemented in a finer matrix						
SANDSTONE	Sand size particles defined by the following grain sizes:						
	fine	0.06mm to 0.2mm					
	medium						
	coarse	0.6mm to 2mm					
SILTSTONE	Predomina	ately silt sized particles					
SHALE	Fine particles (silt or clay) and fissile						
CLAYSTONE	Predominately clay sized particles						

The classification of rock weathering is described based on definitions in AS1726 and summarised as follows.

Term and s	ymbol	Definition					
Residual Soil	RS	Soil developed on rock with the mass structure and substance of the parent rock no longer evident					
Extremely weathered	XW	Weathered to such an extent that the rock has 'soil-like' properties					
Distinctly weathered	DW	The strength is usually changed and may be highly discoloured. Porosity may be increased by leaching, or decreased due to deposition in pores					
Slightly weathered	SW	Slightly discoloured; little or no change of strength from fresh rock					
Fresh Rock	FR	The rock shows no sign of decomposition or staining					

The rock material strength can be defined based on the point load index as follows.

Term and symb	ol	Point Load Index I _s 50					
Extremely low	EL	< 0.03MPa					
Very Low	VL	0.03MPa to 0.1MPa					
Low	L	0.1MPa to 0.3MPa					
Medium	М	0.3MPa to 1MPa					
High	н	1MPa to 3MPa					
Very High	VH	3MPa to 10MPa					
Extremely High	EH	> 10MPa					

It is important to note that the rock material strength as above is distinct from the rock mass strength which can be significantly weaker due to the effect of defects. A preliminary assessment of rock strength may be made using the field guide detailed in AS1726, and this is conducted in the absence of point load testing.

The defect spacing and bedding thickness, measured normal to defects of the same set or bedding, is described as follows.

Definition	Defect Spacing
Thinly laminated	< 6mm
Laminated	6mm to 20mm
Very thinly bedded	20mm to 60mm
Thinly bedded	60mm to 0.2m
Medium bedded	0.2m to 0.6m
Thickly bedded	0.6m to 2m
Very thickly bedded	> 2m

Terms for describing rock and defects are as follows.

Terms			
Joint	JT	Sheared zone	SZ
Bed Parting	BP	Sheared surface	SS
Contact	CO	Seam	SM
Dyke	DK	Crushed Seam	CS
Decomposed Zone	DZ	Infilled Seam	IS
Fracture	FC	Foliation	FL
Fracture Zone	FZ	Vein	VN

The shape and roughness of defects in the rock mass are described using the following terms.

Planarity		Roughness	
Planar	PR	Very Rough	VR
Curved	CU	Rough	RF
Undulating	U	Smooth	S
Irregular	IR	Polished	POL
Stepped	ST	Slickensides	SL

The coating or infill associated with defects in the rock mass are described as follows.

Definition	Description
Clean	No visible coating or infilling
Stain	No visible coating or infilling; surfaces discoloured by mineral staining
Veneer	Visible coating or infilling of soil or mineral substance (<1mm). If discontinuous over the plane; patchy veneer
Coating	Visible coating or infilling of soil or mineral substance (>1mm)

Graphic Symbols Index

Silts

Sandy SILT

Gravelly SILT

Sands

Clayey SAND

Silty SAND

Gravels

CLIENT : TGL Pty Ltd

TESTBORE LOG

HOLE NO : TB001 PROJECT REF : 80514013-04 SHEET : 1 OF 1

PROJECT : Urban Capability Assessment LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator DATE EXCAVATED : 20/10/15 METHOD : 300mm Auger LOGGED BY : AM

CHECKED BY : AM LOCATION : See Drawing for location GROUND WATER LEVELS DYNAMIC PENETROMETER MOISTURE / WEATHERING PENETRO-METER (kPa) CONSISTENCY / REL DENSITY / ROCK STRENGTI GRAPHIC LOG DEPTH (m) MATERIAL DESCRIPTION LES & ASSIFICATI SYMBOL Soil Type, plasticity or particle characteristic, colour Rock Type, grain size, colour Secondary and minor components STRUCTURE & Other Observations SAMPLE FIELD TE 100 200 400 5 0.0 16 86 80 TOPSOIL; Silty SAND, fine to coarse grained, pale brown, with organics 24 64 2 Μ 3 0.10m 0.10m PID=0.0 TB001-1 Sandy SILT, brown 0.20m 10 ALLUVIUM 1 L 6 Μ 0.5 **HP In-situ = 300 - 400 kPa 3 1 L 1 4 0.80 RESIDUAL Silty CLAY, medium to high plasticity, pale grey mottled red-orange, trace gravel, with silt 5 11 жж HP In-situ = 300 - 400 kPa 7 1.00m 1.0 L 1 11 1 1 Т 1 6 1.20m T 11 14 MC > PL VSt - H 1.5 L 1 18 1 1 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:22 8.30.003 Т 2.0 11 2.20r Testbore TB001 terminated at 2.20 m 1.1 11 Target depth 1 T Т 2.5 Т 1 | | | |T. 3.0 00 CARDNO TESTHOLE I MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS CONSISTENCY RELATIVE DENSITY ROCK STRENGTH ROCK WEATHERING Dry
Moist
Wet
Optimum MC
Plastic Limit
Water seepage/inflow
Water lovel D U - Undisturbed Sample VS - Very Soft VL - Very Loose EL - Extremely low RS - Residual soil M -W -OMC -PL -Very low Low Medium D Disturbed Sample VL S F -Soft Loose XW Extremely weathered -VL -L -M -H -ES -Environmental sample -Firm MD - Medium Dense DW -Distinctly weathered SW - Slightly weathered FR - Fresh rock Bulk Disturbed Sample D - Dense VD - Very Dense В -St Stiff H - High VH - Very high EH - Extremely high 5 SPT -Standard Penetration Test VSt -Very Stiff HP - Hand/Pocket Penetrometer GLB Ţ. -Water level H - Hard HOHLOH See Explanatory Notes for CARDNO LTD details of abbreviations & basis of descriptions.

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

TESTBORE LOG

HOLE NO : TB002 PROJECT REF : 80514013-04 SHEET : 1 OF 1

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

DATE EXCAVATED : 20/10/15 LOCATION : See Drawing for location METHOD : 300mm Auger LOGGED BY : AM

CHECKED BY : AM

		-			, -									
	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL D Soil Type, plasticity or par Rock Type, gra Secondary and m	ticle characteristic, col ain size, colour	our	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (kPa)		STRUCTURE & Other Observations
		0.10m	0.0-	79 98 49 8 98 68 5 96 96 69 5	4	TOPSOIL; Silty SAND, fine to coars	se grained, pale brown, wi	th organics	MC > PL		3			
		TB002-1 0.20m				Silty CLAY, low plasticity, dark brow	n-black, with sand						PID	=0.0
		В									3		ALL	UVIUM
											1			
									MC > PL	St - VSt				
			0.5 -								2			_
		0.70m				0.70m					5			
						Silty CLAY, medium to high plasticity	y, pale grey				$\left - \right $		RES	SIDUAL
											5			
			1.0 -								5			
			1.0 -											
											7			
											13			
			1.5 -						MC > PL	St - F	21			_
			1.5											
0.003						as above, but colour change to pale	e grey mottled orange							
9:22 8.3			2.0											_
/2015 09														-
J 23/1						2.20m Testbore TB002 terminated at 2.20	m							
NSW.G				-		Target depth								
BEACH				-										
STERS			2.5	-										-
FORRE				-										
ALI RD_				-										
04_BAK				-										
514013-(-										
LOG 80			3.0 -			<u> </u>								
GEOTECH GLB Log CARDNO_TESTHOLE_LOG 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/1/2015 09:22 8:30.003	D M W	- Dry - Moist - Wet C - Optin - Plast - Wate - Wate	i num M ic Limit r seep	с		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE D VL - Very L - Loose MD - Mediu D - Dens VD - Very	Loose e um Dens e	e L V H V V	L - L - \ - I - H - \	TRENGTH Extremely lov Jow Medium High Very high Extremely h		ROCK WEATHERING RS - Residual soil XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
GEOTECH.(detai	Explanator Is of abbre sis of desc	viatior	IS			CARDNO	LTD						

METHOD : 300mm Auger

LOGGED BY : AM

HOLE NO : TB003 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

PROJECT : Urban Capability Assessment LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:22 8.30.003

00

CARDNO TESTHOLE I

8

GLB

HOHLOH

details of abbreviations & basis of descriptions.

DATE EXCAVATED : 20/10/15

LOCATION : See Drawing for location GROUND WATER LEVELS DYNAMIC PENETROMETER MOISTURE / WEATHERING PENETRO-METER (kPa) CONSISTENCY / REL DENSITY / ROCK STRENGTI GRAPHIC LOG DEPTH (m) MATERIAL DESCRIPTION LES & ASSIFICAT SYMBOL Soil Type, plasticity or particle characteristic, colour Rock Type, grain size, colour Secondary and minor components STRUCTURE & Other Observations SAMPLE FIELD TE 200 300 5 8 0.0 FILL/TOPSOIL; Gravelly SAND, fine to coarse grained, pale brown, trace brick fragments 1 М 0.10m 11 PID=0.0 TB003-1 0.15m ALLUVIUM Silty CLAY, medium to high plasticity, dark grey-black 0.20m | | | |11 MC > PL F - St 0.5 $\star\star$ 11 HP In-situ = 100 - 200 kPa 11 0.75m U50 0.80n 11 RESIDUAL Silty CLAY, medium to high plasticity, pale grey mottled orange 11 1.1 1.0 | | |1.15m 1 1 ** | HP In-situ = 100 - 200 kPa MC > PL F - St 1.5 L groundwater - 1 L 2.0 11 2.20 Testbore TB003 terminated at 2.20 m Т 1 Target depth 1 Т 2.5 1 | | | |1 3.0 MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS CONSISTENCY RELATIVE DENSITY ROCK STRENGTH ROCK WEATHERING Dry
Moist
Wet
Optimum MC
Plastic Limit
Water seepage/inflow
Water lovel D -M -W -OMC -PL -U - Undisturbed Sample VS - Very Soft VL - Very Loose EL - Extremely low RS - Residual soil VL -L -M -H -Very low Low Medium D Disturbed Sample S F -Soft Loose XW Extremely weathered -ES -Environmental sample -Firm MD - Medium Dense DW -Distinctly weathered SW - Slightly weathered FR - Fresh rock Bulk Disturbed Sample В -St Stiff D - Dense H - High VH - Very high EH - Extremely high VD - Very Dense SPT -Standard Penetration Test VSt -Very Stiff HP - Hand/Pocket Penetrometer Ţ. -Water level H - Hard See Explanatory Notes for CARDNO LTD

					ters Beach, NSW		SHEET : 1 OF 1 METHOD : 300mm Auger						
	UIPMENT				or		GGED BY :		ger		CHE	CKED BY : AM	
	CATION :				cation	LO							
			- 0	-									
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL D Soil Type, plasticity or par Rock Type, gra Secondary and m	ticle characteristic, col ain size, colour	our	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (kPa)	STRUCTURE & Other Observations	
	0.10m TB004-1 0.20m	-		0.	TOPSOIL; Silty SAND, fine to coars	se grained, dark brown		M - W				PID=3.1 ALLUVIUM	
	0.65m	- - 0.5 —						M - W			+ + + + + + + + + + + + + + + + + + +	HP In-situ = 100 - 200 kPa	
	U50 0.95m	-		0.	.70m Silty CLAY, medium to high plasticity	/, orange mottled pale gre	у			-		RESIDUAL	
		1.0 — - -						MC - PL	VSt - St			HP In-situ = 200 - 300 kPa	
		- 1.5 — -										- - - -	
22 8.30.003		-		2	.00m							HP In-situ = 300 - 400 kPa	
		- 2.0			Testbore TB004 terminated at 2.00 Target depth	m							
LI RD_FORRESTERS BEAC		- 2.5											
JG 80514013-04_BAKA		- - 3.0-											
OLE_L(
	MC - Optin - Plast Wate	num M(ic Limit r seepa	0		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample E - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DI VL - Very I L - Loose MD - Mediu D - Dense VD - Very I	Loose e um Dense e	e L V H V	L - L - 1 - 1 -	Medium	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock	
See deta	Explanator ails of abbre asis of desc	viation	s	-		CARDNO	LTD						

HOLE NO : TB004

PROJECT REF : 80514013-04

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

CLIENT : TGL Pty Ltd

TESTBORE LOG

METHOD : 300mm Auger

LOGGED BY : AM

HOLE NO : TB005 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

EQUIPMENT TYPE : 5t Excavator

DATE EXCAVATED: 20/10/15

HOHLOH

LOCATION : See Drawing for location

PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

ATE EXO						n	LO	GGED BY :	AM			CHE	CKED BY : AM
										1	,	1	
LEVELS SAMPLES &		~ I	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL D Soil Type, plasticity or par Rock Type, gra Secondary and m	ticle characteristic, cole iin size, colour	Dur	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (kPa)	STRUCTURE & Other Observations
0.10m	- 0.0	0-	নত কি ক েবৰ কি ব তে কে বে বৰ	4		TOPSOIL; Silty SAND, fine to coars	e grained, dark brown		M - D		8		
TB006- 0.20m	1				0.15m	Silty CLAY, low to medium plasticity,	pale grev mottled red						PID=0.2 RESIDUAL
											10		
0.40m											9		
U50	0.9	5									-		
0.60m		Ĭ								VSt - H	6		*
		_									7		↑HP In-situ = 400 - 600 kPa
											7		
		-				as above, but with gravel					/ 		
1.00m U50	1.0	0 —				as above, but with graver					5	 * *	HP In-situ = 200 - 300 kPa
		-									7		
1.20m		-							MC < PL				
		-									17		
		-											
	1.	5 —								St - VSt			
		1											
		-											
		_											
	2.0												
					2.20m								
		_				Testbore TB006 terminated at 2.20 Target depth	m						
		-											
	2.	5											
		-											
		-											
		-											
		-											
		0_		<u> </u>	<u> </u>								
IOISTURI 0 - D 1 - N V - V 0MC - C	Dry Aoist Vet Optimum	MC		R	U D ES	PLES & FIELD TESTS - Undisturbed Sample - Disturbed Sample - Environmental sample - Bulk Disturbed Sample	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff	RELATIVE D VL - Very L - Loos MD - Medi D - Dens	Loose e um Dens	e L	EL - /L - /l -	Medium	XW - Extremely weather DW - Distinctly weather
— - V	Plastic Li Vater se Vater lev	epa	ge/inflo	N	SPT ·	 Buik Disturbed Sample Standard Penetration Test Hand/Pocket Penetrometer 	VSt - Stiff VSt - Very Stiff H - Hard	VD - Very			н - ′н-	High Very high Extremely hi	SW - Slightly weathered FR - Fresh rock gh
e Explar ails of a		tions	;				CARDNO	LTD					I

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

BORE LOG

METHOD : 300mm Auger

HOLE NO : TB006 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

DATE EXCAVATED: 20/10/15

METHOD : 300mm Auger

LOGGED BY : AM

HOLE NO : TB007 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

TESTBORE LOG

METHOD : 300mm Auger

LOGGED BY : AM

PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

HOLE NO : TB008 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

EQUIPMENT TYPE : 5t Excavator DATE EXCAVATED : 20/10/15

LOCATION : See Drawing for location

					sters Beach, NSW						SHEE	1:1	OF 1
	JIPMENT				ltor		IETHOD : 300 OGGED BY :		ger		C		CKED BY : AM
	CATION :				ocation	Ľ					0		
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	Soil Type, plasticity or Rock Type, Secondary an	L DESCRIPTION particle characteristic, c , grain size, colour d minor components	olour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER	400 (KPa)	STRUCTURE & Other Observations
	0.10m TB009-1 QA1 & QA2 0.20m	-			FILL; Silty SAND, fine to coarse	∋ grained, brown		м		2			PID=0.0
		-			FILL; Silty CLAY, medium plasti	city, orange-red (sitewon)		MC > PL	F - St	4			HP In-situ = 200 kPa
		0.5-			0.50m TOPSOIL, Clayey SILT, dark gr	ey		w		3			
	0.80m B	-			0.80m Silty CLAY, low to medium plasti	icity, pale grey mottled oran	ge-red			3			RESIDUAL
		1.0-								9 10	 	*	HP In-situ = 300 - 400 kPa
	1.40m	-								8			
		1.5-						MC > PL	VSt - H	10			
		-											
		2.0-											
		-	FKK		2.20m								
		-			Testbore TB009 terminated at 2	2.20 m							
		2.5-											
		-											
		3.0 —								1			
D M W	IC - Optin - Plast	um Mo c Limit r seepa	C		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Tess HP - Hand/Pocket Penetrometer		RELATIVE D VL - Very L - Loos MD - Medi D - Dens VD - Very	Loose e um Dense e	e L V F	iL - iL - \ iL - i - i - iH - \	Medium	ly low '	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
See deta & ba	Explanator ils of abbre asis of desc	viation	S			CARDNO	D LTD						

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

HOLE NO : TB009 PROJECT REF : 80514013-04

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:23 8.30.003

00

CARDNO TESTHOLE I

8

с С HOHLOH

METHOD : 300mm Auger

HOLE NO : TB010 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CLIENT	:	TGL F	Ptv Ltd	

HOLE NO : TB011 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CHECKED BY : AM

PROJECT : Urban Capability Assessment LOCATION : Bakali Road, Forrsters Beach, NSW

EQUIPMENT TYPE : 5t Excavator

SEOTECH.GLB

See Explanatory Notes for

details of abbreviations & basis of descriptions.

DATE EXCAVATED : 20/10/15 LOCATION : See Drawing for location METHOD : 300mm Auger LOGGED BY : AM

GROUND WATER LEVELS DYNAMIC PENETROMETER HAND PENETRO-METER (KPa) MOISTURE / WEATHERING CONSISTENCY / REL DENSITY / ROCK STRENGTI GRAPHIC LOG DEPTH (m) MATERIAL DESCRIPTION LES & CLASSIFICAT SYMBOL Soil Type, plasticity or particle characteristic, colour Rock Type, grain size, colour Secondary and minor components STRUCTURE & Other Observations SAMPLE FIELD TE 100 200 400 0.0 FILL; Clayey Sandy SILT, dark brown, with gravel, contains brick fragments, plastic, metal scrap 12 0.10m PID=0.0 TB011-1 0.20m 12 0.25m Υ¥, X TOPSOIL; Sandy SILT, dark brown 44 14 1 1 र राज राज स संव राज राज MC < PL F - VSt 11 14 24.24 315 3.4 3 0.50m 0.5 RESIDUAL Silty CLAY, medium plasticity, orange-red 3 0.60m ₩ -* HP In-situ = 100 - 200 kPa | |2 2 3 1.00m 1.0 L 1 1 | | |4 as above, but colour change to pale grey mottled red L | | |6 | | | |MC > PL н 21 1.5 L 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/11/2015 09:23 8.30.003 L 2.0 11 2.20r Testbore TB011 terminated at 2.20 m 1.1 Target depth 1 Т 2.5 1 | | | |T. 3.0 00 CARDNO TESTHOLE I MOISTURE & GROUNDWATER SAMPLES & FIELD TESTS CONSISTENCY RELATIVE DENSITY ROCK STRENGTH ROCK WEATHERING Dry
Moist
Wet
Optimum MC
Plastic Limit
Water seepage/inflow
Water lovel D -M -W -OMC -PL -U - Undisturbed Sample VS - Very Soft VL - Very Loose EL - Extremely low RS - Residual soil Very low Low Medium D Disturbed Sample VL S F -Soft Loose xw Extremely weathered -VL -L -M -H -ES -Environmental sample -Firm MD - Medium Dense DW -Distinctly weathered SW - Slightly weathered FR - Fresh rock Bulk Disturbed Sample В -St Stiff D - Dense VD - Very Dense H - High VH - Very high EH - Extremely high 8 SPT -Standard Penetration Test VSt -Very Stiff HP - Hand/Pocket Penetrometer Ţ. -Water level H - Hard

LOO	CATION :	Baka	li Road	For	rsters	Beach, NSW						SHE	ET	: 1	OF 1
					ator			THOD : 300		ger					
	TE EXCAN CATION :				ocatio	n	LC	GGED BY :	AM				СН	IEC	KED BY : AM
LOC	JATION .	See	Jiawing		ocatio	11									
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DE Soil Type, plasticity or part Rock Type, grai Secondary and mi	ESCRIPTION icle characteristic, co in size, colour inor components	lour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND	300 METER	400 (100)	STRUCTURE & Other Observations
		0.0 —	म राज रंग रा <u>यह राष्ट्र राष</u>	1		TOPSOIL; Sandy SILT, dark brown			м					İ	ALLUVIUM
	0.10m TB012-1 0.20m	-		1	0.10m	Clayey SILT, black									PID=0.1
	D 0.30m	-			0.35m				MC < PL						
	0.40m B	-				Silty CLAY, medium plasticity, orange	e-red, trace of sand								RESIDUAL
	0.50m	0.5 —											¥;	* 	HP In-situ = 300 - 400 kPa .
		-													
		-											Ì		
		1.0 —												 	-
		-				as above, but colour change to pale	grey mottled red		MC < PL	VSt - H				 	
		-											*		HP In-situ > 300 kPa
		1.5 —												 	-
		-													
003		-													
09:23 8.30.		2.0													-
23/11/2015		-			2.20m										
H NSW.GPJ		-				Testbore TB012 terminated at 2.20 r Target depth	m								
ERS BEACH		- 2 F													
FORREST		2.5 —													-
BAKALI RD		_													
80514013-04_E		-										 	 		· · · · · · · · · · · · · · · · · · ·
HOLE_LOG	-	3.0 —													
RDNO_TE	MC - Optin Plast Wate	num M(ic Limit r seepa	C		U D ES B SPT	PLES & FIELD TESTS - Undisturbed Sample - Disturbed Sample - Environmental sample - Bulk Disturbed Sample - Standard Penetration Test - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE D VL - Very L - Loose MD - Medit D - Dens VD - Very	Loose e um Dens e	e L N H	ROCK S L - /L -	Extrer Very I Low Mediu High Very I	nely ow ım nigh	low	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
SEOTECH.	Explanator ails of abbre asis of desc	viation	s				CARDNC	LTD							•

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

HOLE NO : TB012 PROJECT REF : 80514013-04

				-	Assessment rsters Beach, NSW					ECT REF : 80514013-04 T : 1 OF 1		
EQ	UIPMENT	TYPE	: 5t E	xcava	ator	ME	THOD : 300	mm Aug	ger			
						LC	GGED BY : A	۹M			CHEC	CKED BY : AM
LO	CATION :	Seel	Drawing	g for I	ocation							
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		cle characteristic. co	lour	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETER	100 HAND 200 PENETRO- 300 METER 400 (KPa)	STRUCTURE & Other Observations
	0.10m		নত কৃষ্ঠ কৃষ্ঠ দ কৃষ্ঠ কৃষ্ঠ ক তৃত কৃষ্ঠ কৃষ্	1	TOPSOIL; Sandy SILT, dark brown 0.10m							
	TB013-1	-	ЙЙ		Clayey SILT, black					1		PID=0.0
	0.20m D 0.30m	-						М				ALLUVIUM
	0.40m TP013-2	-			0.40m Silty CLAY, medium plasticity, pale gr	ey mottled orange				-		RESIDUAL
		0.5 —									 * * 	
		-						MC > PL	St - VSt			
		1.0 —										-
		-			as above, but colour change to pale (grey				-		
		1.5									* * 	HP In-situ = 300 - 400 kPa
		-										
03		-						MC < PL	VSt - H			
09:23 8.30.003		2.0 —										_
J 23/11/2015		-			2.20m							
CH NSW.GP		-			Testbore TB013 terminated at 2.20 r Target depth	n						
ESTERS BEA		2.5 —										-
I RD_FORRE		-										
3-04_BAKAL		-	-									
OG 8051401		3.0										
OLE_L												
RDNO_TE	- Wet MC - Optin - Plast Wate	num Mo ic Limit r seepa	C		SAMPLES & FIELD TESTS U - Undisturbed Sample D - Disturbed Sample ES - Environmental sample B - Bulk Disturbed Sample SPT - Standard Penetration Test HP - Hand/Pocket Penetrometer	CONSISTENCY VS - Very Soft S - Soft F - Firm St - Stiff VSt - Very Stiff H - Hard	RELATIVE DE VL - Very L L - Loose MD - Mediu D - Dense VD - Very D	Loose e im Dense e	e L V H V	L - L - \ - 1 - -	TRENGTH Extremely low /ery low _ow Medium High /ery high Extremely hig	XW - Extremely weathered DW - Distinctly weathered SW - Slightly weathered FR - Fresh rock
SEOTECH.G deta	Explanator ails of abbre asis of desc	viation	IS	I		CARDNC						1

CLIENT : TGL Pty Ltd PROJECT : Urban Capability Assessment

HOLE NO : TB013 PROJECT REF : 80514013-04 SHEET : 1 OF 1

CLIE	ENT : TO		l td				I BORE LOG					HOLE NO : TB014				
				ilitv A	Assessment								REF : 80514013-04			
					rsters Beach, NSW						SHEET : 1 OF 1					
	JIPMENT			·		MF	THOD : 300r	mm Au	ger							
							GGED BY : A				(CHEC	CKED BY : AM			
	CATION :					20										
臣	TS &	(c	0	NOI		TION		~ O	STH STH	TER	ó	~				
GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIP Soil Type, plasticity or particle cha	non racteristic, col	our	MOISTURE / WEATHERING	CONSISTENCY / REL DENSITY / ROCK STRENGTH	DYNAMIC PENETROMETE	HAND PENETRO-	kPa) KPa)	STRUCTURE			
	AMP	EPT	LC	SYN	Soil Type, plasticity or particle cha Rock Type, grain size, o Secondary and minor com	colour 1ponents		VIOIS1	CK ST	DYN ETR			& Other Observations			
ß	SE	 0.0 —	36 36 36	G		•		- >	Seð	Ű.	100	400				
	0.10m		70, 77, 77, 7, 77, 77, 7 <u>20, 57, 77</u>	4	TOPSOIL; Silty SAND, fine to coarse grained	d, brown		м								
	TB014-1	-	ĪĪĪŽ		Clayey SILT, black					1	ΪÌ	i i	PID=0.0			
	0.20m	-		1												
			ИИ]				м			i i		ALLUVIUM			
		-	ИИ													
		-	КИ		0.40m					4			DEOIDUAL			
					Silty CLAY, medium plasticity, pale grey mottle	ed orange					ΪÌ	i i	RESIDUAL			
		0.5 —									**		HP In-situ = 100 - 200 kPa			
		-														
			WX								i i	i i				
		-	1111]												
		-	¥XX													
		-	VXX/													
		1.0 —	¥XX/										-			
								MC > PL	St - H							
		-											-			
		-									ίi	i i				
			VXX													
		-	III									İİ	-			
		1.5	III										_			
		1.5	VXX								Ϊİ					
		-											-			
		-														
					as above, but colour change to pale grey						ΪÌ	i i				
		-									*	*	HP In-situ = 200 - 300 kPa			
0.003		-											-			
3 8.3				1				MC < PL	VSt			ļ į				
09:2		2.0 —	1111	1									-			
/2015		-	¥¥¥	1									-			
23/11			WŴ		2.20m											
GPJ		-			Testbore TB014 terminated at 2.20 m						++	+ +				
NSW.		-	-		Target depth						ii	i i				
ACH P																
S BE		-	1										-			
STER		2.5 —	-										-			
RRES																
Đ.		-	1										-			
LI RD		-	1										-			
3AKA																
F04 E		-	1								i i	i i				
14015		-	-										-			
805		3.0-														
Pog		J.U -														
- JOLE							i									
DM EST	DISTURE &	GROUN	IDWATE	R	SAMPLES & FIELD TESTS CONS	SISTENCY	RELATIVE DE	INSITY	R	OCK S	TREN	GTH	ROCK WEATHERING			
P N	- Dry - Moist					- Very Soft	VL - Very L		E	EL - E	Extrem /ery lo	ely lov				
ARDN M	- Wet /C - Optin		c		ES - Environmental sample F -	- Soft - Firm	L - Loose MD - Mediu	im Dens	e L	- L	-OW		XW - Extremely weathered DW - Distinctly weathered			
	- Plast	ic Limit				 Stiff Very Stiff 	D - Dense VD - Very D		H	n - P I - F	/lediun High /ery hi	1	SW - Slightly weathered FR - Fresh rock			
ער ער ש	Wate - Wate	r level	age/inflo	N		- Very Stiff - Hard	v - very L	20136	E	Ή - \ Η - Ε	/ery hi Extrem	gh ely hig				
GEOTECH.GLB L0g CARDNO_TESTHOLE_LOG 80514013-04_BAKALI RD_FORRESTERS BEACH NSW.GPJ 23/1/2015 09:23 8.30.00 중 없 없	Explanator	v Note	s for		I								1			
deta	ils of abbre	viation	IS		CA	ARDNO LTD										
ш & ba	asis of desc	ription	S.													

Proposed Residential Development, Bakali Rd, Forresters Beach

APPENDIX

LABORATORY TEST RESULTS

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions
 Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

QUALITY OF MATERIALS REPORT

-	_							_				
Client:		igal Grosvenor Lo						Report N	lumber:	15689/	R/2352-2	
Client Address:	41	The Entrance	Road, The Ei	ntrance				Project I	Number:	15689/	P/2891	
Project:	Urb	oan Capability	Assessment					Lot Num	ber:			
Location:	Bał	kali Road, For	resters Beach	ı				Internal	Test Request:	15689/	T/1711	
Component:								Client R	eference/s:			
Area Description:								Report D	Date / Page:	16/11/2	2015	Page 1 of 3
Test Procedures	AS	1289.3.6.1, A	S1289.3.1.1, /	AS1289.3.2.1,	AS1	289.2.	1.1, AS	1289.3.3	3.1			
Sample Number	156	89/S/8836				Bore	e No.			TB002		
Sampling Method	AS	1289.1.2.1 Cl	6.5.3			Sam	ple Typ	be		Bulk		
Date Sampled	20/	10/2015				Sam	ple De	pth	m	0.20-0.7	0	
Sampled By	Alir	eza Mohiti										
Date Tested	09/	11/2015				Mate	erial So	urce	In situ			
Att. Drying Method	Ove	en Dried				Mate	erial Ty	ре	-			
Atterberg Preparation	Dry	Sieved				Mate	erial De	scription	Silty CLAY,	dark bro	wn/black	
AS Sieve (mm)		Specification Minimum	Percent Passing (%)	Specification Maximum			PA	ARTICLE	SIZE DIST	RIBUTI	ON GRAP	н
19.0			100			100]			-	•		
13.2			100			-						
9.5			100			80 -						
6.7			99		(9)	-	-					
4.75			99		6) Bi	60 -						
2.36			99		assir	-						
1.18			98		ht Pa							
0.600			98		Percent Passing (%)	40 -						
0.425			96		Ре	-						
0.300			88			20 -						
0.150			80									
0.075			73			0 -			· · [· · · · · · · · · · · · · · · · ·			
							0.0	0.1	0.600 0.425 0.300	1.1	4.75 2.36	19.0 13.2 9.5
							75	5				NO
									AS Siev	ve Size (n	nm)	
Test Result		Specification Minimum	Result	Specification Maximum		Те	est Resul	t	Specification Minimum		Result	Specification Maximum
Liquid Limit (%)			27		0.07	75/0.42	25 Fines	s Ratio			0.76	
Plastic Limit (%)			15		Pl x	0.425	Ratio ((%)			1152.0	
Plastic Index (%)			12		LS	x 0.42	5 Ratio	(%)			-	
Linear Shrinkage (%)					Par	ticle Si	ze Dist	. Moisture	e Content (%)		20.2	
Linear Shrinkage Defe	ects											

Remarks

ΝΑΤΑ

Re-Issued Report Replaces Report No 15689/R/2352-1.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

ald

Accreditation Number:

15689

Approved Signatory: Geoffrey Edwards Form ID: W85MCRep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

QUALITY OF MATERIALS REPORT

							1					
Client:	Terr	igal Grosvenor Lo	odge Pty Ltd					Report N	Number:	15689	/R/2352-2	
Client Address:	41	The Entrance	Road, The Er	ntrance				Project I	Number:	15689	/P/2891	
Project:	Urb	an Capability	Assessment					Lot Num	iber:			
Location:	Bal	kali Road, For	resters Beach	ı				Internal	Test Request:	15689)/T/1711	
Component:								Client R	eference/s:			
Area Description:								Report [Date / Page:	16/11/	2015	Page 2 of 3
Test Procedures	AS	1289.3.6.1, A	S1289.3.1.1, /	AS1289.3.2.1,	, AS1	289.2	.1.1, AS	1289.3.3	3.1			
Sample Number	156	89/S/8838				Bor	e No.			TB007		
Sampling Method	AS	1289.1.2.1 Cl	6.5.3			San	nple Typ	be		Bulk		
Date Sampled	20/	10/2015				San	nple De	pth	m	0.60-1.	00	
Sampled By	Alir	eza Mohiti										
Date Tested	09/	11/2015				Mat	erial So	urce	In situ			
Att. Drying Method	Ove	en Dried				Mat	erial Ty	ре	-			
Atterberg Preparation	Dry	Sieved				Mat	erial De	scription	Sandy CLA	Y, grey	orange	
AS Sieve (mm)		Specification Minimum	Percent Passing (%)	Specification Maximum			PA	ARTICL	E SIZE DIST	RIBUT	ION GRAP	н
19.0			100			100 -				~		
13.2			100									
9.5			100			80 -		-/				
6.7			100		(9)			/				
4.75			99		6) Ð	60 -						
2.36			98		Percent Passing (%)		•					
1.18			98		it Pa	-						
0.600			96		rcen	40 -						
0.425			96		Pe							
0.300			94			20 -						
0.150			79									
0.075			58			0 -	<u> </u>					
							0.07	0.15	- 0,40 0,30	- 1.18	- 4.75	- 19.0 - 9.5
							75	5	8 X 8 AS Sie	ve Size (
Test Result		Specification Minimum	Result	Specification Maximum		Т	est Resul	lt	Specification Minimum	n	Result	Specification Maximum
Liquid Limit (%)			38		0.0	75/0.4	25 Fines	s Ratio			0.60	
Plastic Limit (%)			17		PD	¢ 0.425	5 Ratio ((%)			2016.0	
Plastic Index (%)			21		LS	x 0.42	5 Ratio	(%)			-	
Linear Shrinkage (%)					Par	ticle S	ize Dist	. Moisture	e Content (%)		20.3	
Linear Shrinkage Defe	ects											

Remarks

ΝΑΤΑ

Re-Issued Report Replaces Report No 15689/R/2352-1.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

ald

Accreditation Number:

15689

Approved Signatory: Geoffrey Edwards Form ID: W85MCRep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

QUALITY OF MATERIALS REPORT

Client:	Terr	rigal Grosvenor Lo	odge Pty Ltd					Report N	Number:	15689/R	/2352-2	
Client Address:	41	The Entrance	Road, The Er	ntrance				Project N	Number:	15689/P/	2891	
Project:	Urb	oan Capability	Assessment					Lot Num	ıber:			
Location:	Bal	kali Road, For	resters Beach	1				Internal	Test Request:	15689/T/	1711	
Component:								Client R	eference/s:			
Area Description:								Report D	Date / Page:	16/11/20	15	Page 3 of 3
Test Procedures	AS	1289.3.6.1, A	S1289.3.1.1, A	AS1289.3.2.1,	, AS1	289.2	.1.1, AS	1289.3.3	3.1			
Sample Number	156	689/S/8841				Bor	e No.			TB012		
Sampling Method	AS	1289.1.2.1 Cl	6.5.3			Sar	nple Ty	be		Bulk		
Date Sampled	20/	10/2015				Sar	nple De	pth	m	0.40-0.50		
Sampled By	Alir	eza Mohiti										
Date Tested	09/	11/2015				Mat	erial So	urce	In situ			
Att. Drying Method	Ov	en Dried				Mat	erial Ty	ре	-			
Atterberg Preparation	Dry	Sieved				Mat	erial De	escription	Silty CLAY,	orange/re	d	
AS Sieve (mm)		Specification Minimum	Percent Passing (%)	Specification Maximum			P/	ARTICLE	E SIZE DISTI	RIBUTIC	ON GRAP	н
19.0			100		1	100 -		-		• •		
13.2			100									
9.5			99			80 -	•					
6.7			99		9		-					
4.75			98		6) 6	60 -						
2.36			97		ssin							
1.18			97		Percent Passing (%)		-					
0.600			97		Cen	40 -						
0.425			97		Pe]					
0.300			96			20 -						
0.150			94									
0.075			84			0 -	1					
						-	- 0.075	- 0.150	- 0,600 0,425 0,300	- 2.36 1.18	4.75	19.0 9.5
										e Size (mr	n)	
Test Result		Specification Minimum	Result	Specification Maximum		T	est Resu	lt	Specification Minimum		Result	Specification Maximum
Liquid Limit (%)			44		0.0	75/0.4	25 Fine	s Ratio			0.87	
Plastic Limit (%)			14		PL	x 0.42	5 Ratio ((%)		2	910.0	
Plastic Index (%)			30		LS	x 0.42	5 Ratio	(%)			-	
Linear Shrinkage (%)					Pa	ticle S	ize Dist	. Moisture	e Content (%)		17.2	
Linear Shrinkage Defe	cts											

Remarks

ΝΑΤΑ

Re-Issued Report Replaces Report No 15689/R/2352-1.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

ald

Accreditation Number:

15689

Approved Signatory: Geoffrey Edwards Form ID: W85MCRep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

EMERSON CLASS NUMBER REPORT

Client:	Terrigal Gros	venor Lodge Pty Ltd		Report Number:	15689/R/2353-2	
Client Address:	41 The En	trance Road, The Entrance		Project Number:	15689/P/2891	
Project:	Urban Cap	ability Assessment	Lot Number:			
Location:	Bakali Roa	d, Forresters Beach		Internal Test Request:	15689/T/1711	
Component:				Client Reference/s:		
Area Description:	Description:			Report Date / Page:	16/11/2015	Page 1 of 1
Test Procedures: AS1289.3		AS1289.3.8.1				

Sample Number		15689/S/8836	15689/S/8837	15689/S/8838	15689/S/8841
ID / Client ID		-	-	-	-
Lot Number		-	-	-	-
Date / Time Sampled		20/10/2015	20/10/2015	20/10/2015	20/10/2015
Material Source		In situ	In situ	In situ	In situ
Material Type		-	-	-	-
Sampling Method		AS1289.1.2.1 CI 6.5.3	AS1289.1.2.1 CI 6.5.3	AS1289.1.2.1 CI 6.5.3	AS1289.1.2.1 CI 6.5.3
Water Type		Distilled	Distilled	Distilled	Distilled
Water Temperature (C°)		25	25	25	25
Bore No.		TB002	TB005	TB007	TB012
Sample Type	m	Bulk	Bulk	Bulk	Bulk
Sample Depth	m	0.20-0.70	1.10-2.00	0.60-1.00	0.40-0.50
Soil Description		Silty CLAY, dark brown/black	Silty CLAY, pale grey mott orange/	Sandy CLAY, grey orange	Silty CLAY, orange/red
Emerson Class Number		2	2	2	2

Remarks

ΝΑΤΑ

Re-Issued Report Replaces Report No 15689/R/2353-1.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

ald.

Accreditation Number:

15689

Approved Signatory: Geoffrey Edwards Form ID: W34Rep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

SHRINK SWELL INDEX

Client:	Terrigal Grosvenor	Lodge Pty Ltd		Report Number:	15689/R/2354-1	
Client Address:	41 The Entranc	e Road, The Entrance		Project Number:	15689/P/2891	
Project:	Urban Capabili	ty Assessment		Lot Number:		
Location:	Bakali Road, F	orresters Beach		Internal Test Request	: 15689/T/1711	
Component:				Client Reference/s:		
Area Description:				Report Date / Page:	17/11/2015	Page 1 of 6
Test Procedures:	AS1289.7.1.1,	AS1289.2.1.1	Bore No.	•	TB006	
Sample Number	15689/S/8842		Sample Ty	pe	U50	
Sampling Method	AS1289.1.2.1 0	CI 6.5.3	Sample De	epth m	0.40-0.60	
Date Sampled	20/10/2015					
Sampled By	Alireza Mohiti		Material So	ource	In situ	
Date Tested	28/10/2015		Material Ty	/pe	-	
Soil Description:		Silty CLAY, grey mottled red				
Cracking / Crumbling	:	Major/None				
Estimated Inert Inclus	sions (%):	5.00	Swell Pre-	Soak Moisture Content	(%) 32.1	
Shrinkage Moisture (Content (%):	33.3	Swell Post	-Soak Moisture Conten	t (%) 32.9	
Shrinkage Strain	(%)	5.6	Ch	ink / Curoll Index		2.1
Swell Strain (%)		0.0		ink / Swell Index	X	3.1

Remarks

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025
 Accreditation Number: 15689

 Accreditation Number:
 15689
 Approved Signatory: Joseph Stallard Form ID: W21Rep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

SHRINK SWELL INDEX

Client:	Terrigal Grosvenor	Lodge Pty Ltd		Report Number:	15689/R/2354-1	
Client Address:	41 The Entranc	e Road, The Entrance		Project Number:	15689/P/2891	
Project:	Urban Capabilit	ty Assessment		Lot Number:		
Location:	Bakali Road, Fo	orresters Beach		Internal Test Request	: 15689/T/1711	
Component:				Client Reference/s:		
Area Description:				Report Date / Page:	17/11/2015	Page 2 of 6
Test Procedures:	AS1289.7.1.1, /	AS1289.2.1.1	Bore No.		TB006	
Sample Number	15689/S/8843		Sample Ty	ре	U50	
Sampling Method	AS1289.1.2.1 C	CI 6.5.3	Sample De	epth m	1.00-1.20	
Date Sampled	20/10/2015					
Sampled By	Alireza Mohiti		Material So	ource	In situ	
Date Tested	28/10/2015		Material Ty	ире	-	
Soil Description:		Silty CLAY, grey mottled red				
Cracking / Crumbling	:	Major/Moderate				
Estimated Inert Inclus	sions (%):	5.00	Swell Pre-	Soak Moisture Content	(%) 33.6	
Shrinkage Moisture C	Content (%):	25.7	Swell Post	-Soak Moisture Conten	t (%) 37.0	
Shrinkage Strain ((%)	3.8	(L	nk / Cwall Inday		0.0
Swell Strain (%)		0.5		ink / Swell Index	X	2.3

Remarks

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025
 Accreditation Number: 15689

 Accreditation Number:
 15689
 Approved Signatory: Joseph Stallard Form ID: W21Rep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

SHRINK SWELL INDEX

Client:	Terrigal Grosvenor	Lodge Pty Ltd		Report Number:	15689/R/2354-1	
Client Address:	41 The Entrand	ce Road, The Entrance		Project Number:	15689/P/2891	
Project:	Urban Capabili	ty Assessment		Lot Number:		
Location:	Bakali Road, F	orresters Beach		Internal Test Request	: 15689/T/1711	
Component:				Client Reference/s:		
Area Description:				Report Date / Page:	17/11/2015	Page 3 of 6
Test Procedures:	AS1289.7.1.1,	AS1289.2.1.1	Bore No.		TB010	
Sample Number	15689/S/8844		Sample Ty	ре	U50	
Sampling Method	AS1289.1.2.1 (CI 6.5.3	Sample De	epth m	0.50-0.74	
Date Sampled	20/10/2015					
Sampled By	Alireza Mohiti		Material So	ource	In situ	
Date Tested	28/10/2015		Material Ty	/pe	-	
Soil Description:		Silty CLAY, orange/red				
Cracking / Crumbling	g:	Moderate/None				
Estimated Inert Inclu	sions (%):	5.00	Swell Pre-	Soak Moisture Content	(%) 25.3	
Shrinkage Moisture	Content (%):	24.6	Swell Post	-Soak Moisture Conten	t (%) 29.5	
Shrinkage Strain	(%)	5.2	Chai	ante / Curall Inda		1 0
Swell Strain (%)		1.3	Snr	ink / Swell Inde	X	3.2

Remarks

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025
 Accreditation Number: 15689

 Accreditation Number:
 15689
 Approved Signatory: Joseph Stallard Form ID: W21Rep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

SHRINK SWELL INDEX

Client:	Terrigal Grosvenor	Lodge Pty Ltd		Report Number:	15689/R/2354-1		
Client Address:	41 The Entrance	e Road, The Entrance		Project Number:	15689/P/2891		
Project:	Urban Capabilit	y Assessment		Lot Number:			
Location:	Bakali Road, Fo	prresters Beach		Internal Test Request	: 15689/T/1711		
Component:				Client Reference/s:			
Area Description:				Report Date / Page:	17/11/2015	Page 4	4 of 6
Test Procedures:	AS1289.7.1.1, A	AS1289.2.1.1	Bore No.	-	TB010		
Sample Number	15689/S/8845		Sample Ty	pe	U50		
Sampling Method	AS1289.1.2.1 C	cl 6.5.3	Sample De	epth m	0.90-1.10		
Date Sampled	20/10/2015						
Sampled By	Alireza Mohiti		Material So	ource	In situ		
Date Tested	28/10/2015		Material Ty	/ре	-		
Soil Description:		Silty CLAY, pale grey mottled r	ed				
Cracking / Crumbling	:	Major/None					
Estimated Inert Inclus	sions (%):	0.00	Swell Pre-	Soak Moisture Content	(%) 23.0		
Shrinkage Moisture C	Content (%):	26.6	Swell Post	-Soak Moisture Conten	t (%) 30.1		
Shrinkage Strain ((%)	3.8	Ch	ink / Cwall Inday		2.4	
Swell Strain (%)		1.0		ink / Swell Index	X	2.4	

Remarks

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025
 Maccreditation Number: 15689

 Accreditation Number:
 15689
 Approved Signatory: Joseph Stallard Form ID: W21Rep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

SHRINK SWELL INDEX

Client:	Terrigal Grosvenor	Lodge Pty Ltd		Report Number:	15689/R/2354-1			
Client Address:	41 The Entranc	e Road, The Entrance		Project Number:	15689/P/2891			
Project:	Urban Capabili	ty Assessment		Lot Number:				
Location:	Bakali Road, F	orresters Beach		Internal Test Request	: 15689/T/1711			
Component:				Client Reference/s:				
Area Description:				Report Date / Page:	17/11/2015	Page 5 of 6		
Test Procedures:	AS1289.7.1.1,	AS1289.2.1.1	Bore No.	•	TB003			
Sample Number	15689/S/8846		Sample Ty	pe	U50			
Sampling Method	AS1289.1.2.1 (CI 6.5.3	Sample De	epth m	0.75-1.15			
Date Sampled	20/10/2015							
Sampled By	Alireza Mohiti		Material So	ource	In situ			
Date Tested	28/10/2015		Material Ty	/pe	-			
Soil Description:		Silty CLAY, dark grey black						
Cracking / Crumbling	:	Moderate/Minor						
Estimated Inert Inclusions (%): 5.00		5.00	Swell Pre-Soak Moisture Content (%) 19.7					
Shrinkage Moisture Content (%): 21.1			Swell Post-Soak Moisture Content (%) 20.7					
Shrinkage Strain (%)		0.9	Chrink / Swall Index			0.5		
Swell Strain (%) 0.0		0.0		ink / Swell Index		0.5		

Remarks

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025
 Maccreditation Number: 15689

 Accreditation Number:
 15689
 Approved Signatory: Joseph Stallard Form ID: W21Rep Rev 1

Unit 4, 5 Arunga Drive

Beresfield NSW 2322

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

SHRINK SWELL INDEX

Client:	Terrigal Grosvenor	Lodge Pty Ltd		Report Number:	15689/R/2354-1	
Client Address:	41 The Entrance	e Road, The Entrance		Project Number:	15689/P/2891	
Project:	Urban Capability Assessment			Lot Number:		
Location:	Bakali Road, Forresters Beach			Internal Test Request	: 15689/T/1711	
Component:				Client Reference/s:		
Area Description:				Report Date / Page:	17/11/2015	Page 6 of 6
Test Procedures:	AS1289.7.1.1, A	AS1289.2.1.1	Bore No.	•	TB008	
Sample Number	15689/S/8847		Sample Ty	rpe	U50	
Sampling Method	AS1289.1.2.1 CI 6.5.3		Sample De	epth m	0.60-0.90	
Date Sampled	20/10/2015					
Sampled By	Alireza Mohiti		Material Se	ource	In situ	
Date Tested	28/10/2015		Material T	уре	-	
Soil Description:		Silty CLAY, red mottled pale g	геу			
Cracking / Crumbling:	:	Minor/None				
Estimated Inert Inclus	sions (%):	0.00	Swell Pre-	Soak Moisture Content	(%) 20.4	
Shrinkage Moisture C	Content (%):	20.6	Swell Post	-Soak Moisture Content	t (%) 22.7	
Shrinkage Strain (%)		2.9	(L.	Chrink / Swall Indox		1.4
Swell Strain (%)		0.0		ink / Swell Index	X	1.6

Remarks

 The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025
 Maccreditation Number: 15689

 Accreditation Number:
 15689
 Approved Signatory: Joseph Stallard Form ID: W21Rep Rev 1
Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

Unit 4, 5 Arunga Drive Beresfield NSW 2322

CALIFORNIA BEARING RATIO REPORT	CAL	IFORNIA	BEARING	RATIO	REPORT
---------------------------------	-----	----------------	----------------	-------	--------

Client:	Terrigal Grosveno	r Lodge Pty Ltd			Repo	rt Num	iber:		15689/R/2371-1	
Client Address:	41 The Entran	ce Road, The Entra	nce		Project Number: 15689/P/2891					
Project:	Urban Capability Assessment				Lot Number:					
Location:	Bakali Road, Forresters Beach				Interr	nal Tes	t Requ	lest:	15689/T/1711	
Component:					Clien	t Refer	ence/s	S:		
Area Description:					Repo	rt Date	/ Pag	e:	17/11/2015	Page 1 c
Test Procedures	AS1289.6.1.1,	AS1289.5.1.1, AS1	289.2.1.1							
Sample Number	15689/S/8835						Sa	ample	e Location	
Sampling Method	AS1289.1.2.1	CI 6.5.3		Bore No.					TB001	
Date Sampled	20/10/2015			Sample T	уре			l	Bulk	
Sampled By	Alireza Mohiti			Sample D	epth	I	m		1.00-1.20	
Date Tested	10/11/2015									
Material Source	In situ			Material L	imit Sta	rt			-	
Material Type	-			Material L	imit End	d			-	
Client Reference	-			Compacti	ve Effor	t		:	Standard	
Material Description	Silty CLAY, pa	le grey mottled red/	orange							
Maximum Dry Density	y (t/m³):	1.69			CBR	PEN	FTRA	TIO	N PLOT	
Optimum Moisture Co	ontent (%):	21.0			CDI				11201	
Field Moisture Conter	nt (%):	24.9	700							
Sample Percent Over	rsize (%)	0.0	700							
Oversize Included / E	xcluded	Excluded	600							
Target Density Ratio	(%):	100	-							
Target Moisture Ratio	o (%):	100	500							
Placement Dry Densi	ty (t/m³):	1.69	2 400							
Placement Dry Densi	ty Ratio (%):	100.0	(N) 400							
Placement Moisture (Content (%):	20.6	300					_		
Placement Moisture F	Ratio (%):	98.5	-							
Test Condition / Soak	king Period:	Soaked / 4 Days	200							
CBR Surcharge (kg)		4.5	100							
Dry Density After Soa		1.64								
Moisture (top 30mm)		25.8	o 1/							
Moisture (remainder)	After Soak (%)	22.4	0.5mm	2.5mm 1.5mm 1.0mm	3.5mm	4.5mm	5.5mm	6.5mm	7.5mm	12.
CBR Swell (%):		3.0	i mm		, m	m	m	m	m m	12.5mm
Minimum CBR Specif	. ,	-					Penetr	ation	(mm)	5
CBR Value @ 5.0mn	n (%):	2.0					reneu	ation	(mm)	

Remarks

NATA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Accreditation Number:

15689

A Mand.

 Laboratory:
 Geotech Solutions
 Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

Geotech Solutions Address: Shaping the Future Unit 4, 5 A

Cardno

Unit 4, 5 Arunga Drive Beresfield NSW 2322

CALIFORNIA BEARING RATIO	REPORT
--------------------------	--------

errigal Grosvenor	Lodge Pty Ltd				Rep	oort Nu	Imber	:	15	689/R/2371-1		
1 The Entranc	e Road, The Entrar	nce			Project Number: 15689/P/2891							
Urban Capability Assessment				Lot Number:								
Bakali Road, Forresters Beach					Internal Test Request: 15689/T/1711							
					Clie	ent Ref	erenc	e/s:				
								17	/11/2015	Page	2 of 4	
S1289 6 1 1	AS1289 5 1 1 AS1	289 2 1 1						a.go.				
	A01203.5.1.1, A012	200.2.1.1						Sam	ole I o	cation		
	CI 6.5.3		Bore I	No.				e ann				
					pe							
							m					
0/11/2015												
situ			Mater	al Lii	mit St	tart			-			
									_			
			Comp	activ	e Effo	ort			Sta	ndard		
ilty CLAY, pal	e grey mott orange/	black to brown										
m³):	1.81				CB		NET			IOT		
nt (%):	17.0				CD	IX FL		V.11		201		
%):	24.8	-										
e (%)	0.0	1200										
ıded	Excluded	-										
	100	1000 -										
):	100											
/m³):	1.82	E ····										
atio (%):	100.5	Pe 600										
、 ,	-											
()		400 -	_									
Period:	-	-										
(223);		200 -			_							
		/										
		0 - 4		+								\vdash
21 OUAK (70)		0.01	19	2.0n	3.0n	4.0n	5.0n	5.0n	7.0n	10.0	5	
ion (%) [.]	-	=	3	Ĭ	ä	ă	Э.	ž	ž		3	
			Penetration (mm)									
	rban Capabili akali Road, Fo 51289.6.1.1, 7 5689/S/8837 51289.1.2.1 C 0/10/2015 ireza Mohiti 0/11/2015 situ Ity CLAY, pal n³): nt (%): 6): (%) ded): (m³): atio (%): ent (%): o (%): Period: m³): r Soak (%) r Soak (%) on (%):	rban Capability Assessment akali Road, Forresters Beach 51289.6.1.1, AS1289.5.1.1, AS12 5689/S/8837 51289.1.2.1 CI 6.5.3 0/10/2015 ireza Mohiti 0/11/2015 situ Ity CLAY, pale grey mott orange/ n³): 1.81 nt (%): 17.0 6): 24.8 (%) 0.0 ded Excluded 100 (%): 100.5 ent (%): 17.3 0 (%): 102.0 Period: Soaked / 4 Days 4.5 m³): 1.77 r Soak (%) 22.4 r Soak (%) 17.9 2.5 on (%): -	akali Road, Forresters Beach S1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 5689/S/8837 S1289.1.2.1 Cl 6.5.3 0/10/2015 ireza Mohiti 0/11/2015 situ Ity CLAY, pale grey mott orange/black to brown n³): 1.81 nt (%): 17.0 6): 24.8 (%) 0.0 ded Excluded 100 1000 m³): 1.82 atio (%): 100.5 ent (%): 17.3 0(%): 102.0 Period: Soaked / 4 Days 4.5 1.77 r Soak (%) 17.9 2.5 0.(%): 17.9 2.5 on (%): -	rban Capability Assessment akali Road, Forresters Beach S1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 5689/S/8837 S1289.1.2.1 Cl 6.5.3 D/10/2015 ireza Mohiti D/11/2015 situ Materi Materi Comp Ity CLAY, pale grey mott orange/black to brown n³): 1.81 nt (%): 17.0 b): 24.8 (%) 0.0 ded Excluded 100 p: 100 m³): 1.82 atio (%): 17.3 o (%): 102.0 Period: Soaked / 4 Days 4.5 m³): 1.77 r Soak (%) 22.4 r Soak (%) 17.9 2.5 on (%): -	rban Capability Assessment akali Road, Forresters Beach 51289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 5689/S/8837 51289.1.2.1 Cl 6.5.3 D/10/2015 ireza Mohiti D/11/2015 situ Material Lin Compactiv Ity CLAY, pale grey mott orange/black to brown n ⁹): 1.81 nt (%): 17.0 b): 24.8 (%) 0.0 ded Excluded 100): 100 m ³): 1.82 atio (%): 100.5 ent (%): 17.3 0 (%): 102.0 Period: Soaked / 4 Days (4.5 m ³): 1.77 r Soak (%) 22.4 r Soak (%) 17.9 2.5 on (%): -	rban Capability Assessment akali Road, Forresters Beach Edite St289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 S689/S/8837 S1289.1.2.1 CI 6.5.3 0/10/2015 ireza Mohiti 0/11/2015 situ Material Limit S Material Limit E Compactive Effection ty CLAY, pale grey mott orange/black to brown n ^a): 1.81 nt (%): 17.0 b): 24.8 (%) 0.0 ded Excluded 100): 1.82 atio (%): 1.82 atio (%): 100.5 ent (%): 1.77 r Soak (%) 22.4 r Soak (%) 2.5 on (%): -	rban Capability Assessment Lot Numb akali Road, Forresters Beach Internal Ta Client Ref Report Da 51289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 Bore No. 531289.1.2.1 Cl 6.5.3 Bore No. 0/10/2015 Sample Type ireza Mohiti Material Limit Start 0/11/2015 Material Limit Start situ Material Limit End 0/11/2015 17.0 b): 24.8 0(%): 17.0 b): 24.8 0(%) 1000 m³): 1.82 atio (%): 100.5 ent (%): 17.3 0(%): 102.0 Period: Soaked / 4 Days 4.5 1.77 r Soak (%) 17.9 2.5 0n (%): 0(%): 2.5 on (%): -	rban Capability Assessment Lot Number: akali Road, Forresters Beach Internal Test Re Client Reference Report Date / P 51289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 S689/S/8837 51289.1.2.1 Cl 6.5.3 Bore No. Sample Type Sample Depth b)/10/2015 Sample Depth situ Material Limit Start Material Limit Start Material Limit End Compactive Effort CBR PENETI 11/0 17.0 6): 24.8 6(%) 0.0 1200 1000 100 1000 100 100.5 ent (%): 17.3 0(%): 102.0 Period: Soaked / 4 Days 4.5 2.5 on (%): 2.5 on (%): 2.5 on (%): -	rban Capability Assessment Lot Number: akali Road, Forresters Beach Internal Test Request S1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 See 5689/S/8837 Sample S1289.1.2.1 Cl 6.5.3 Bore No. V10/2015 Sample Type irreza Mohiti Material Limit Start Material Limit Start Material Limit End Compactive Effort CBR PENETRATIO 1ty CLAY, pale grey mott orange/black to brown CBR PENETRATIO m ⁿ): 1.81 CBR PENETRATIO 1ty CLAY, pale grey mott orange/black to brown 1200 m ⁿ): 1.82 20 (%) 0.0 100 (%) 100.5 100.5 m ⁿ): 1.77 1.82 (%) 102.0 20 Period: Soaked / 4 Days 4.5 1.77 r Soak (%) 17.9 2.5 2.5 on (%): -	rban Capability Assessment Lot Number: akali Road, Forresters Beach Internal Test Request: 15: Client Reference/s: Report Date / Page: 17 S1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 Sample Lo S689/S/8837 Sample Lo S1289.1.2.1 Cl 6.5.3 Bore No. D/10/2015 Sample Type situ Material Limit Start D/11/2015 Material Limit Start situ 1.81 Mt (%): 17.0 6): 24.8 (%) 0.0 ded Excluded 100 1.82 atio (%): 17.3 0 (%): 17.3 0 (%): 17.3 0 (%): 17.3 0 (%): 17.3 0 (%): 17.3 0 (%): 102.0 Period: Soaked / 4 Days 4.5 1.77 r Soak (%) 22.4 r Soak (%) 17.9 2.5 2.5 on (%): -	ban Capability Assessment Lot Number: Internal Test Request: 15689/T/1711 Client Reference/s: Report Date / Page: 17/11/2015 S1289.6.1.1, AS1289.5.1.1, AS1289.2.1.1 Sample Location B689/S/8837 Sample Location Bore No. TB005 S1289.1.2.1 Cl 6.5.3 Sample Location V/10/2015 Bore No. TB005 situ Material Limit Start - Material Limit Start - Compactive Effort Standard tty CLAY, pale grey mott orange/black to brown 17.0 100 100 100 110 100.5 17.0 1200 Excluded 100.5 100, ': 100.5 17.7 100, ': 100.5 17.7 100, ': 102.0 20.4, 5 17.77 102.0 20.4, 5 17.77 17.7 17.7 17.79 2.5 0 0 0, ''(h): 17.7 2.5 0, ''(h): 1.7.7 1.7.7 17.9 2.5 0	than Capability Assessment Lot Number: akaii Road, Forresters Beach Lot Number: Internal Test Request: 15689/T/1711 Clent Reference/s: Report Date / Page: 17/11/2015 Sample Location Bore No. TB005 Sample Location Bore No. TB005 Sample Location Sample Location bireza Mohiti Material Limit Start - v/11/2015 Material Limit Start - situ 17.0 - v/1/(%): 17.0 - v/(%): 0.0 600 600 w(%): 100.5 600 600 w(%): 100.5 600 600 w(%): 17.7 1.77 50aked / 4 Days v(%): 17.7 50aked / 4 Days 600 v(%): 17.7 50ake(%) 22.4 v(%): 17.7 50ake(%) 22.4 v(%): 17.7 50ake(%) 22.4 v(%): 17.7 0 0 0 0 v(%): 17.7 0 <t< td=""></t<>

Remarks

NATA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

15689

A Mand.

Accreditation Number:

 Laboratory:
 Geotech Solutions
 Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

Geotech Solutions Address: Shaping the Future Unit 4, 5 A

Cardno

Unit 4, 5 Arunga Drive Beresfield NSW 2322

CALIFORNIA BEARING	RATIO	REPORT
---------------------------	-------	--------

Client:	Terrigal Grosveno	r Lodge Pty Ltd				Rep	ort Nu	umber	:	15	689/R/2371-1	
Client Address:	41 The Entran	ce Road, The Entra	nce			Project Number: 15689/P/2891						
Project:	Urban Capability Assessment				Lot Number:							
Location:	Bakali Road, Forresters Beach					Inte	rnal To	est Re	eques	t: 15	689/T/1711	
Component:						Clie	Client Reference/s:					
Area Description:						Rep	ort Da	ate / P	ade:	17/	/11/2015	Page 3 of 4
Test Procedures	AS1289.6.1.1.	9.6.1.1, AS1289.5.1.1, AS1289.2.1.1										
Sample Number	15689/S/8839			1					Sam	ple Lo	cation	
Sampling Method	AS1289.1.2.1	CI 6.5.3		Bore	No.					TBC		
Date Sampled	20/10/2015			Samp	ole Tv	ре				Bull	<	
Sampled By	Alireza Mohiti			Samp	-			m		0.80)-1.40	
Date Tested	10/11/2015											
Material Source	In situ			Mater	rial Li	mit St	tart			-		
Material Type	-			Mater	rial Li	mit Er	nd			-		
Client Reference	-		Compactive Effort					Star	ndard			
Material Description	Silty CLAY, pa	le grey mottled oran	ige-red									
Maximum Dry Density	/ (t/m³):	1.66				CB	R PF	NETI	RATI	ON P	IOT	
Optimum Moisture Co	ntent (%):	20.5				CD	K I L				201	
Field Moisture Conten	nt (%):	24.2	1200									
Sample Percent Overs	size (%)	2.0	1200 -									
Oversize Included / Ex	xcluded	Excluded	1000									
Target Density Ratio ((%):	100	1000									
Target Moisture Ratio	(%):	100	800									
Placement Dry Densit	y (t/m³):	1.65	£ ·									
Placement Dry Densit	y Ratio (%):	100.0	(N) peo 600					\sim				
Placement Moisture C	Content (%):	20.8										
Placement Moisture R	()	101.5	400 📜									
Test Condition / Soaki	ing Period:	Soaked / 4 Days										
CBR Surcharge (kg)		4.5	200		+							
Dry Density After Soal		1.62										
Moisture (top 30mm)		27.8	o 🚣		mhumh					h		
Moisture (remainder)	Atter Soak (%)	22.8	0	1.0mm	2.0mm	3.0mm	4.0mm	5.0mm	6.0mm	7.0mm	10.	5
CBR Swell (%):	ination (P())	2.0			mm	mm	mm	mm	mm	mm	10.0mm	
Minimum CBR Specification (%):							Pe	netrat	ion (m			
CBR Value @ 5.0mm	1 (%):	3.5						10	- nord of	su (m		

Remarks

NATA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

156

A Mand.

Accreditation Number:

15689

 Laboratory:
 Geotech Solutions Newcastle

 Phone:
 02 4949 4300
 Fax:
 02 4966 0485

Email: james.young@cardno.com.au

Geotech Solutions Address: Shaping the Future Unit 4, 5 A

Cardno

Unit 4, 5 Arunga Drive Beresfield NSW 2322

Client:	Terrigal Grosveno	r Lodge Pty Ltd			Report N	lumber:		15689/R/2371-1	
Client Address:	41 The Entrance Road, The Entrance				Project Number: 15689/P/2891				
Project:	Urban Capability Assessment				Lot Number:				
Location:	Bakali Road, Forresters Beach				Internal	Test Requ	uest:	15689/T/1711	
Component:					Client R	eference/s	s:		
Area Description:					Report D	Date / Pag	je:	17/11/2015	Page 4 of 4
Test Procedures	AS1289.6.1.1,	AS1289.5.1.1, AS1	289.2.1.1		1				
Sample Number	15689/S/8840					S	ample	e Location	
Sampling Method	AS1289.1.2.1	CI 6.5.3		Bore No.				TB011	
Date Sampled	20/10/2015			Sample Ty	ре			Bulk	
Sampled By	Alireza Mohiti			Sample De	epth	m		0.60-1.00	
Date Tested	10/11/2015								
Material Source	In situ			Material Li	mit Start			-	
Material Type	-			Material Li	mit End			-	
Client Reference	-			Compactiv	e Effort		:	Standard	
Material Description	Silty CLAY. or	ange/red							
Maximum Dry Density	/ (t/m³):	1.66			CBR P	ENETRA		N PLOT	
Optimum Moisture Co	ontent (%):	21.5	600		CDICI				
Field Moisture Conter	nt (%):	23.1							
Sample Percent Over	size (%)	0.0							
Oversize Included / E	xcluded	Excluded	500						
Target Density Ratio	(%):	100	-						
Target Moisture Ratio	(%):	100	400						
Placement Dry Densit	ty (t/m³):	1.66	£ ·						
Placement Dry Densit	ty Ratio (%):	100.5	pp 300						
Placement Moisture C	Content (%):	21.9	9 1						
Placement Moisture F	Ratio (%):	102.0	200						
Test Condition / Soak	ing Period:	Soaked / 4 Days	1						
CBR Surcharge (kg)		4.5	100						
Dry Density After Soa		1.58							
Moisture (top 30mm)		31.7	o -						
Moisture (remainder)	After Soak (%)	23.3	0.5mm	1.5	ω. 5	5.5mm 4.5mm	б 5	7.5	12.
CBR Swell (%):		5.0	i mm	2.5mm 1.5mm 1.0mm	3.5mm	5.5mm	.5mm	.5mm	12.5mm
Minimum CBR Specif		-						(mm)	3
CBR Value @ 5.0mm	ו (%):	1.5				Penetr	auon	(000)	

Remarks

NATA

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

15689

A Mand

Accreditation Number:

ANALYTICAL REPORT

oontdot	Alireza Mohiti		
Client		Manager	Huong Crawford
	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145132 R0
Order Number	80514013	Date Received	22/10/2015
Samples	2	Date Reported	28/10/2015

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in soil sample using trace analysis technique as per AS 4964-2004.

Sample #1: Asbestos found in 3x2mm cement sheet fragment in >2 to <7mm fraction.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

So betiter

Yusuf Kuthpudin Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

t +61 2 8594 0400

f +61 2 8594 0499

www.sgs.com.au

Fibre ID in bulk materials [AN602] Tested: 28/10/2015

			AS-2
			MATERIAL
			- 21/10/2015
PARAMETER	UOM	LOR	SE145132.002
Asbestos Detected	No unit	-	Yes

SE145132 R0

Gravimetric Determination of Asbestos in Soil [AN605] Tested: -

			AS-1
			SOIL
			-
PARAMETER	UOM	LOR	21/10/2015 SE145132.001
Total Sample Weight*	g	1	985
ACM in >7mm Sample*	g	0.01	<0.01
AF/FA in >2mm to <7mm Sample*	g	0.0001	0.0115
AF/FA in <2mm Sample*	g	0.0001	<0.0001
Asbestos in soil (>7mm ACM)*	%w/w	0.01	<0.01
Asbestos in soil (>2mm to <7mm AF/FA)*	%w/w	0.001	0.001
Asbestos in soil (<2mm AF/FA)*	%w/w	0.001	<0.001
Asbestos in soil (<7mm AF/FA)*	%w/w	0.001	0.001
Fibre Type*	No unit	-	CRY

METHOD	
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN605	This technique gravimetrically determines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.
AN605	This technique also gravimetrically determines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the total sample weight. This does not include free fibres which are only observed by standard trace analysis as per AN 602.
AN605	AMO = Amosite CRY = Chrysotile CRO = Crocidolite
AN605	Insofar as is technically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009.

FOOTNOTES

- * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded.
- No NVL No IS Ins LNR Sa

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Alireza Mohiti	Manager	Huong Crawford
Client	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145132 R0
Order Number	80514013	Date Received	22 Oct 2015
Samples	1	Date Reported	28 Oct 2015

COMMENTS ·

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

No respirable fibres detected in soil sample using trace analysis technique as per AS 4964-2004.

Sample #1: Asbestos found in 3x2mm cement sheet fragment in >2 to <7mm fraction.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

betet ser C.

Yusuf Kuthpudin Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

ANALYTICAL REPORT

Laboratory Client Matrix Sample Date Sampled Fibre Identification	Ellen el la confette el forma			
Fibre ID in bulk materials Method AN602		 Sample	 	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).

FOOTNOTES

Amosite	-	Brown Asbestos	NA	-	Not Analysed
Chrysotile	-	White Asbestos	LNR	-	Listed, Not Required
Crocidolite	-	Blue Asbestos	*	-	NATA accreditation does not cover the performance of this service.
Amphiboles	-	Amosite and/or Crocidolite	**	-	Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS	S	LABORATORY DE	TAILS
Contact	Alireza Mohiti	Manager	Huong Crawford
Client	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145133 R0
Order Number	80514013	Date Received	22/10/2015
Samples	13	Date Reported	28/10/2015

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Dong Liang Metals/Inorganics Team Leader

kmln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia

t +61 2 8594 0400

f +61 2 8594 0499

www.sgs.com.au

ANALYTICAL RESULTS

SE145133 R0

VOC's in Soil [AN433/AN434] Tested: 25/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
PARAMETER	UOM	LOR	20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOW	LUR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6

			QA1	TB011-1	TB007-1	TB008-1	Trip Blank
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011	SE145133.012
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX*	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6

			Trip Spike SOIL - 20/10/2015
PARAMETER	UOM	LOR	SE145133.013
Benzene	mg/kg	0.1	[92%]
Toluene	mg/kg	0.1	[100%]
Ethylbenzene	mg/kg	0.1	[98%]
m/p-xylene	mg/kg	0.2	[98%]
o-xylene	mg/kg	0.1	[99%]
Naphthalene	mg/kg	0.1	-
Total Xylenes*	mg/kg	0.3	-
Total BTEX*	mg/kg	0.6	-

Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 25/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

ANALYTICAL RESULTS

SE145133 R0

TRH (Total Recoverable Hydrocarbons) in Soil [AN403]

Tested: 23/10/2015	1	fested:	23/	10	201	15
--------------------	---	---------	-----	----	-----	----

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0*<>	TEQ	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8

Speciated Phenols in Soil [AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	20/10/2015 SE145133.003	20/10/2015 SE145133.004	20/10/2015 SE145133.005	20/10/2015 SE145133.006	20/10/2015 SE145133.007
Phenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1	<1	<1	<1	<1
Total Cresol	mg/kg	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
2-chlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-dimethylphenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,6-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2-nitrophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
4-nitrophenol	mg/kg	1	<1	<1	<1	<1	<1
2,4,5-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1	<1	<1	<1	<1
Pentachlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2,4-dinitrophenol	mg/kg	2	<2	<2	<2	<2	<2
4-chloro-3-methylphenol	mg/kg	2	<2	<2	<2	<2	<2

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Phenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1	<1	<1	<1
Total Cresol	mg/kg	1.5	<1.5	<1.5	<1.5	<1.5
2-chlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4-dimethylphenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,6-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4-dichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2-nitrophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
4-nitrophenol	mg/kg	1	<1	<1	<1	<1
2,4,5-trichlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1	<1	<1	<1
Pentachlorophenol	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
2,4-dinitrophenol	mg/kg	2	<2	<2	<2	<2
4-chloro-3-methylphenol	mg/kg	2	<2	<2	<2	<2

OC Pesticides in Soil [AN400/AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

ANALYTICAL RESULTS

OC Pesticides in Soil [AN400/AN420] Tested: 23/10/2015 (continued)

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1

OP Pesticides in Soil [AN400/AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2

PCBs in Soil [AN400/AN420] Tested: 23/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			QA1	TB011-1	TB007-1	TB008-1
			SOIL - 20/10/2015	SOIL - 20/10/2015	SOIL - 20/10/2015	SOIL - 20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1

pH in soil (1:2) [AN101] Tested: 27/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1
			SOIL	SOIL	SOIL	SOIL
						-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004
pH (1:2)	pH Units	-	4.4	5.3	5.2	5.0

Conductivity (1:2) in soil [AN106] Tested: 27/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1
			SOIL	SOIL	SOIL	SOIL
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004
Conductivity (1:2) @25 C*	µS/cm	1	150	170	140	50
Resistivity (1:2)*	ohm cm	-	6700	5900	7100	20000

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 26/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1
			SOIL	SOIL	SOIL	SOIL
						-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004
Chloride	mg/kg	0.25	9.6	73	48	8.7
Sulphate	mg/kg	0.5	120	36	25	9.8

Total Recoverable Metals in Soil by ICPOES [AN040/AN320] Tested: 27/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Arsenic, As	mg/kg	3	<3	3	5	<3	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.5	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	4.3	8.8	25	6.3	10
Copper, Cu	mg/kg	0.5	1.9	7.3	5.6	1.5	3.9
Lead, Pb	mg/kg	1	5	38	11	4	12
Nickel, Ni	mg/kg	0.5	0.9	1.6	2.1	0.8	1.6
Zinc, Zn	mg/kg	0.5	6.1	130	13	43	15

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	20/10/2015 SE145133.008	20/10/2015 SE145133.009	20/10/2015 SE145133.010	20/10/2015 SE145133.011
Arsenic, As	mg/kg	3	<3	3	5	<3
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.3	<0.3
Chromium, Cr	mg/kg	0.3	6.5	10	19	1.4
Copper, Cu	mg/kg	0.5	1.6	6.1	14	0.5
Lead, Pb	mg/kg	1	4	9	15	<1
Nickel, Ni	mg/kg	0.5	0.8	2.9	15	<0.5
Zinc, Zn	mg/kg	0.5	43	40	120	1.7

SE145133 R0

Mercury in Soil [AN312] Tested: 27/10/2015

			TB012-1	TB006-1	TB005-1	TB009-1	TB010-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.003	SE145133.004	SE145133.005	SE145133.006	SE145133.007
Mercury	mg/kg	0.01	0.01	0.01	<0.01	<0.01	0.01

			QA1	TB011-1	TB007-1	TB008-1
			SOIL	SOIL	SOIL	SOIL
						-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.008	SE145133.009	SE145133.010	SE145133.011
Mercury	mg/kg	0.01	<0.01	0.01	<0.01	<0.01

SE145133 R0

Moisture Content [AN002] Tested: 25/10/2015

			TB008 (1.8-2.0)	TB013-1	TB012-1	TB006-1	TB005-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.001	SE145133.002	SE145133.003	SE145133.004	SE145133.005
% Moisture	%w/w	0.5	19	20	13	9.9	17

			TB009-1	TB010-1	QA1	TB011-1	TB007-1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			20/10/2015	20/10/2015	20/10/2015	20/10/2015	20/10/2015
PARAMETER	UOM	LOR	SE145133.006	SE145133.007	SE145133.008	SE145133.009	SE145133.010
% Moisture	%w/w	0.5	9.8	14	11	12	16

			TB008-1	Trip Blank
			SOIL	SOIL
			- 20/10/2015	- 20/10/2015
PARAMETER	UOM	LOR	SE145133.011	SE145133.012
% Moisture	%w/w	0.5	6.2	<0.5

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.
AN106	Conductivity : Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:2 and the EC determined and reported on the extract basis after the 1 hour extraction (EC(1:2)) or after the 1 hour extraction and overnight aging (EC(1:2) aged). Reference APHA 2510 B.
AN106	Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.
AN245	Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN400	OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433/AN434/AN410	VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN433/AN434	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded. - NVL N IS II LNR S

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM LOR ↑↓

 Unit of Measure.
 Limit of Reporting.
 Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Alireza Mohiti	Manager	Huong Crawford
Client	CARDNO GEOTECH SOLUTIONS PTY LTD	Laboratory	SGS Alexandria Environmental
Address	34/205-207 Albany Street North Gosford NSW 2250	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 4320 1000	Telephone	+61 2 8594 0400
Facsimile	61 2 4324 3251	Facsimile	+61 2 8594 0499
Email	alireza.mohiti@cardno.com.au	Email	au.environmental.sydney@sgs.com
Project	80514013	SGS Reference	SE145133 R0
Order Number	80514013	Date Received	22 Oct 2015
Samples	13	Date Reported	28 Oct 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Sample counts by matrix	13 Soil	Type of documentation received	COC	
Date documentation received	22/10/2015	Samples received in good order	Yes	
Samples received without headspace	Yes	Sample temperature upon receipt	20°C	
Sample container provider	SGS	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	Ice Bricks	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexan

5 Australia 5 Australia

t +61 2 8594 0400 f +61 2 8594 0499

0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity (1:2) in soil							Method:	ME-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB008 (1.8-2.0)	SE145133.001	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
TB013-1	SE145133.002	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
TB012-1	SE145133.003	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
TB006-1	SE145133.004	LB088261	20 Oct 2015	22 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015	27 Oct 2015
Mercury in Soil							Method:	ME-(AU)-[ENV]AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB006-1	SE145133.004	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB005-1	SE145133.005	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB009-1	SE145133.006	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB010-1	SE145133.007	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
QA1	SE145133.008	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB011-1	SE145133.009	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB007-1	SE145133.010	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
TB008-1	SE145133.011	LB088240	20 Oct 2015	22 Oct 2015	17 Nov 2015	27 Oct 2015	17 Nov 2015	28 Oct 2015
Moisture Content							Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB008 (1.8-2.0)	SE145133.001	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB013-1	SE145133.002	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB012-1	SE145133.003	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB006-1	SE145133.004	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB005-1	SE145133.005	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB009-1	SE145133.006	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB010-1	SE145133.007	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
QA1	SE145133.008	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB011-1	SE145133.009	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB007-1	SE145133.010	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
TB008-1	SE145133.011	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
Trip Blank	SE145133.012	LB088089	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	30 Oct 2015	28 Oct 2015
OC Pesticides in Soil							Method: ME-(AU)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB006-1	SE145133.004	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB005-1	SE145133.005	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB009-1	SE145133.006	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB010-1	SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
QA1	SE145133.008	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB011-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB007-1	SE145133.010	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB008-1	SE145133.011	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
OP Pesticides in Soil)-[ENV]AN400/AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB006-1	SE145133.004	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB005-1	SE145133.005	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB009-1	SE145133.006	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB010-1	SE145133.007	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
QA1	SE145133.008	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB011-1 TB007-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB007-1 TB008-1	SE145133.010 SE145133.011	LB088018 LB088018	20 Oct 2015 20 Oct 2015	22 Oct 2015 22 Oct 2015	03 Nov 2015 03 Nov 2015	23 Oct 2015 23 Oct 2015	02 Dec 2015 02 Dec 2015	28 Oct 2015 28 Oct 2015
PAH (Polynuclear Aromatic H		000010			111012010			ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB006-1	SE145133.003	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB005-1	SE145133.004	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015
TB009-1	SE145133.006	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Method: ME-(AU)-[ENV]AN420 PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Analysed QC Ref Sample Name Sample No. Sampled Received Extraction Due Extracted Analysis Due TB010-1 SE145133.007 I B088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 QA1 SE145133.008 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB011-1 SE145133.009 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB007-1 SE145133.010 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 LB088018 TB008-1 SE145133.011 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 PCBs in Soil Method: ME-(AU)-[ENV]AN400/AN420 Received Extracted Sample Name QC Ref Extraction Due Analysis Due Analysed Sample No. Sampled TB012-1 SE145133.003 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB006-1 SE145133 004 I B088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB005-SE145133.005 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 LB088018 TB009-1 SE145133.006 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB010-1 SE145133.007 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 QA1 SE145133.008 20 Oct 2015 22 Oct 2015 02 Dec 2015 LB088018 03 Nov 2015 23 Oct 2015 28 Oct 2015 TB011-1 SE145133.009 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB007-1 SE145133.010 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB008-1 SE145133.011 LB088018 20 Oct 2015 03 Nov 2015 02 Dec 2015 22 Oct 2015 23 Oct 2015 28 Oct 2015 pH in soil (1:2) Method: ME-(AU)-[ENV]AN101 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TB008 (1.8-2.0) SE145133.001 LB088260 20 Oct 2015 22 Oct 2015 27 Oct 2015 27 Oct 2015 28 Oct 2015 27 Oct 2015 TB013-1 SE145133.002 LB088260 20 Oct 2015 22 Oct 2015 27 Oct 2015 27 Oct 2015 28 Oct 2015 27 Oct 2015 TB012-1 SE145133.003 LB088260 20 Oct 2015 22 Oct 2015 27 Oct 2015 27 Oct 2015 28 Oct 2015 27 Oct 2015 TB006-1 SE145133.004 LB088260 20 Oct 2015 22 Oct 2015 27 Oct 2015 28 Oct 2015 27 Oct 2015 27 Oct 2015 Soluble Anions in Soil from 1:2 DI Extract by Ion Ch atography Method: ME-(AU)-[ENV]AN245 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TB008 (1.8-2.0) SE145133.001 LB088190 20 Oct 2015 22 Oct 2015 27 Oct 2015 26 Oct 2015 23 Nov 2015 28 Oct 2015 TB013-1 SE145133.002 LB088190 20 Oct 2015 22 Oct 2015 27 Oct 2015 26 Oct 2015 23 Nov 2015 28 Oct 2015 SE145133.003 20 Oct 2015 TB012-1 LB088190 22 Oct 2015 27 Oct 2015 26 Oct 2015 23 Nov 2015 28 Oct 2015 TB006-1 SE145133.004 LB088190 23 Nov 2015 20 Oct 2015 22 Oct 2015 27 Oct 2015 26 Oct 2015 28 Oct 2015 Speciated Phenols in Soil Method: ME-(AU)-[ENV]AN420 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TB012-1 SE145133.003 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB006-1 SE145133.004 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB005-1 SE145133.005 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB009-1 SE145133.006 20 Oct 2015 22 Oct 2015 23 Oct 2015 02 Dec 2015 LB088018 03 Nov 2015 28 Oct 2015 TB010-1 SE145133.007 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 QA1 SE145133.008 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB011-1 SE145133.009 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB007-1 SE145133.010 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 LB088018 TB008-1 SE145133.011 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 Total Recoverable Metals in Soil by ICPOES Method: ME-(AU)-IENVIAN040/AN320 Analysis Due Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed TB012-1 SE145133.003 LB088227 20 Oct 2015 22 Oct 2015 17 Apr 2016 27 Oct 2015 17 Apr 2016 28 Oct 2015 TB006-1 SE145133.004 LB088227 20 Oct 2015 22 Oct 2015 17 Apr 2016 27 Oct 2015 17 Apr 2016 28 Oct 2015 20 Oct 2015 TB005-1 SE145133.005 LB088227 22 Oct 2015 17 Apr 2016 17 Apr 2016 27 Oct 2015 28 Oct 2015 TB009-1 SE145133.006 LB088227 20 Oct 2015 22 Oct 2015 17 Apr 2016 27 Oct 2015 17 Apr 2016 28 Oct 2015 TB010-1 SE145133.007 LB088227 20 Oct 2015 22 Oct 2015 17 Apr 2016 27 Oct 2015 17 Apr 2016 28 Oct 2015 QA1 SE145133.008 LB088227 20 Oct 2015 22 Oct 2015 17 Apr 2016 27 Oct 2015 17 Apr 2016 28 Oct 2015 TB011-1 SE145133.009 LB088227 17 Apr 2016 20 Oct 2015 22 Oct 2015 27 Oct 2015 17 Apr 2016 28 Oct 2015 TB007-1 SE145133.010 I B088227 20 Oct 2015 22 Oct 2015 17 Apr 2016 27 Oct 2015 17 Apr 2016 28 Oct 2015 17 Apr 2016 TB008-1 SE145133.011 LB088227 20 Oct 2015 22 Oct 2015 27 Oct 2015 28 Oct 2015 17 Apr 2016 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Name Analysis Due Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted TB012-1 SE145133.003 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB006-1 SE145133.004 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB005-1 SE145133.005 I B088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 TB009-1 SE145133.006 LB088018 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015 LB088018 TB010-1 SE145133.007 20 Oct 2015 22 Oct 2015 03 Nov 2015 23 Oct 2015 02 Dec 2015 28 Oct 2015

Method: ME (ALI) JENI/JAN/422/AN/424/AN/410

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

TRH (Total Recoverable Hydrocarbons) in Soil (continued)								Method: ME-(AU)-[ENV]AN403		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QA1	SE145133.008	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015		
TB011-1	SE145133.009	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015		
TB007-1	SE145133.010	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015		
TB008-1	SE145133.011	LB088018	20 Oct 2015	22 Oct 2015	03 Nov 2015	23 Oct 2015	02 Dec 2015	28 Oct 2015		

VOC's in Soil Method: ME-(AU)-[ENV]AN433/AN434 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TB012-1 SE145133.003 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB006-1 SE145133.004 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB005-1 SE145133.005 I B088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB009-SE145133.006 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB010-1 SE145133.007 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 QA1 SE145133.008 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB011-1 SE145133.009 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB007-1 SE145133.010 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 TB008-1 SE145133.011 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015 Trip Blank SE145133.012 LB088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 04 Dec 2015 25 Oct 2015 28 Oct 2015 Trip Spike SE145133.013 I B088081 20 Oct 2015 22 Oct 2015 03 Nov 2015 25 Oct 2015 04 Dec 2015 28 Oct 2015

Detroloum Hudrocerbone in Sol

Volaule Petroleum Hydrocarbons in Soli Method:								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TB012-1	SE145133.003	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB006-1	SE145133.004	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB005-1	SE145133.005	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB009-1	SE145133.006	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB010-1	SE145133.007	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
QA1	SE145133.008	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB011-1	SE145133.009	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB007-1	SE145133.010	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
TB008-1	SE145133.011	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
Trip Blank	SE145133.012	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015
Trip Spike	SE145133.013	LB088081	20 Oct 2015	22 Oct 2015	03 Nov 2015	25 Oct 2015	04 Dec 2015	28 Oct 2015

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420 Recovery % Parameter Sample Nam Sample Numb Units Criteria Tetrachloro-m-xylene (TCMX) (Surrogate) TB012-1 SE145133.003 % 60 - 130% 99 TB006-1 SE145133.004 % 60 - 130% 96 TB005-1 SE145133.005 % 60 - 130% 97 TB009-1 SE145133.006 % 60 - 130% 92 TB010-1 SE145133.007 % 60 - 130% 97 QA1 SE145133.008 % 60 - 130% 100 TB011-1 SE145133.009 % 60 - 130% 99 TB007-1 SE145133.010 60 - 130% 98 % TB008-1 SE145133.011 % 60 - 130% 100 **OP Pesticides in Soil** Method: ME-(AU)-[ENV]AN400/AN420 Parameter Sample Name Sample Number Criteria Recovery % 2-fluorobiphenyl (Surrogate) TB012-1 SE145133.003 60 - 130% 84 % TB006-1 SE145133.004 % 60 - 130% 84 TB005-1 SE145133.005 % 60 - 130% 88 TB009-1 SE145133.006 % 60 - 130% 86 SE145133.007 60 - 130% TB010-1 % 80 QA1 SE145133.008 % 60 - 130% 84 TB011-1 SE145133.009 % 60 - 130% 84 TB007-1 SE145133.010 % 60 - 130% 80 TB008-1 SE145133.011 % 60 - 130% 82 d14-p-terphenyl (Surrogate) TB012-1 SE145133.003 60 - 130% 104 % TB006-1 SE145133.004 % 60 - 130% 106 TB005-1 SE145133.005 % 60 - 130% 110 TB009-1 SE145133.006 60 - 130% 110 % TB010-1 SE145133.007 % 60 - 130% 100 QA1 SE145133.008 % 60 - 130% 108 TB011-1 108 SE145133.009 60 - 130% % TB007-1 SE145133.010 % 60 - 130% 104 TB008-1 SE145133.011 % 60 - 130% 104

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	84
	TB006-1	SE145133.004	%	70 - 130%	84
	TB005-1	SE145133.005	%	70 - 130%	88
	TB009-1	SE145133.006	%	70 - 130%	86
	TB010-1	SE145133.007	%	70 - 130%	80
	QA1	SE145133.008	%	70 - 130%	84
	TB011-1	SE145133.009	%	70 - 130%	84
	TB007-1	SE145133.010	%	70 - 130%	80
	TB008-1	SE145133.011	%	70 - 130%	82
d14-p-terphenyl (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	104
	TB006-1	SE145133.004	%	70 - 130%	106
	TB005-1	SE145133.005	%	70 - 130%	110
	TB009-1	SE145133.006	%	70 - 130%	110
	TB010-1	SE145133.007	%	70 - 130%	100
	QA1	SE145133.008	%	70 - 130%	108
	TB011-1	SE145133.009	%	70 - 130%	108
	TB007-1	SE145133.010	%	70 - 130%	104
	TB008-1	SE145133.011	%	70 - 130%	104
d5-nitrobenzene (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	80
	TB006-1	SE145133.004	%	70 - 130%	90
	TB005-1	SE145133.005	%	70 - 130%	86
	TB009-1	SE145133.006	%	70 - 130%	88
	TB010-1	SE145133.007	%	70 - 130%	78
	QA1	SE145133.008	%	70 - 130%	82
	TB011-1	SE145133.009	%	70 - 130%	80
	TB007-1	SE145133.010	%	70 - 130%	78
	TB008-1	SE145133.011	%	70 - 130%	78

Method: ME-(AU)-[ENV]AN420

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	Sample Name	Comple Number	Units	Criteria	ENVJAN400/AN
arameter		Sample Number			Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	99
	TB006-1	SE145133.004	%	60 - 130%	96
	TB005-1	SE145133.005	%	60 - 130%	97
	TB009-1	SE145133.006	%	60 - 130%	92
	TB010-1	SE145133.007	%	60 - 130%	97
	QA1	SE145133.008	%	60 - 130%	100
	TB011-1	SE145133.009	%	60 - 130%	99
	TB007-1	SE145133.010	%	60 - 130%	98
	TB008-1	SE145133.011	%	60 - 130%	100
peciated Phenols in Soil				Method: MI	E-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2,4,6-Tribromophenol (Surrogate)	TB012-1	SE145133.003	%	70 - 130%	96
	TB006-1	SE145133.004	%	70 - 130%	95
	TB005-1	SE145133.005	%	70 - 130%	93
	TB009-1	SE145133.006	%	70 - 130%	91
	TB010-1	SE145133.007	%	70 - 130%	91
	QA1	SE145133.008	%	70 - 130%	90
	TB011-1	SE145133.009	%	70 - 130%	93
	TB007-1	SE145133.010	%	70 - 130%	90
	TB008-1	SE145133.011	%	70 - 130%	88
d5-phenol (Surrogate)	TB012-1	SE145133.003	%	50 - 130%	78
	TB006-1	SE145133.004	%	50 - 130%	77
	TB005-1	SE145133.005	%	50 - 130%	76
	TB009-1	SE145133.006	%	50 - 130%	86
	TB010-1	SE145133.007	%	50 - 130%	87
	QA1	SE145133.008	%	50 - 130%	89
	TB011-1	SE145133.009	%	50 - 130%	84
	TB007-1	SE145133.010	%	50 - 130%	94
	TB008-1	SE145133.011	%	50 - 130%	90

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
Bromofluorobenzene (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	94	
	TB006-1	SE145133.004	%	60 - 130%	90	
	TB005-1	SE145133.005	%	60 - 130%	90	
	TB009-1	SE145133.006	%	60 - 130%	94	
	TB010-1	SE145133.007	%	60 - 130%	96	
	QA1	SE145133.008	%	60 - 130%	93	
	TB011-1	SE145133.009	%	60 - 130%	96	
	TB007-1	SE145133.010	%	60 - 130%	92	
	TB008-1	SE145133.011	%	60 - 130%	95	
	Trip Blank	SE145133.012	%	60 - 130%	94	
	Trip Spike	SE145133.013	%	60 - 130%	105	
d4-1,2-dichloroethane (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	81	
	TB006-1	SE145133.004	%	60 - 130%	90	
	TB005-1	SE145133.005	%	60 - 130%	87	
	TB009-1	SE145133.006	%	60 - 130%	73	
	TB010-1	SE145133.007	%	60 - 130%	86	
	QA1	SE145133.008	%	60 - 130%	81	
	TB011-1	SE145133.009	%	60 - 130%	79	
	TB007-1	SE145133.010	%	60 - 130%	87	
	TB008-1	SE145133.011	%	60 - 130%	80	
	Trip Blank	SE145133.012	%	60 - 130%	86	
	Trip Spike	SE145133.013	%	60 - 130%	77	
d8-toluene (Surrogate)	TB012-1	SE145133.003	%	60 - 130%	89	
	TB006-1	SE145133.004	%	60 - 130%	103	
	TB005-1	SE145133.005	%	60 - 130%	98	
	TB009-1	SE145133.006	%	60 - 130%	80	
	TB010-1	SE145133.007	%	60 - 130%	96	
	QA1	SE145133.008	%	60 - 130%	92	
	TB011-1	SE145133.009	%	60 - 130%	88	

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433/AN434

Method: ME-(AU)-[ENV]AN433/AN434/AN410

Sample Name	Sample Number	Units	Criteria	Recovery %	
TB007-1	SE145133.010	%	60 - 130%	95	
TB008-1	SE145133.011	%	60 - 130%	87	
Trip Blank	SE145133.012	%	60 - 130%	99	
Trip Spike	SE145133.013	%	60 - 130%	83	
TB012-1	SE145133.003	%	60 - 130%	76	
TB006-1	SE145133.004	%	60 - 130%	88	
TB005-1	SE145133.005	%	60 - 130%	83	
TB009-1	SE145133.006	%	60 - 130%	72	
TB010-1	SE145133.007	%	60 - 130%	84	
QA1	SE145133.008	%	60 - 130%	79	
TB011-1	SE145133.009	%	60 - 130%	75	
TB007-1	SE145133.010	%	60 - 130%	86	
TB008-1	SE145133.011	%	60 - 130%	78	
Trip Blank	SE145133.012	%	60 - 130%	86	
Trip Spike	SE145133.013	%	60 - 130%	122	
	TB007-1 TB008-1 Trip Blank Trip Spike TB012-1 TB006-1 TB005-1 TB009-1 TB011-1 QA1 TB011-1 TB007-1 TB008-1 TB008-1	TB007-1 SE145133.010 TB008-1 SE145133.011 Trip Blank SE145133.012 Trip Spike SE145133.013 TB006-1 SE145133.003 TB006-1 SE145133.004 TB009-1 SE145133.006 TB010-1 SE145133.008 TB011-1 SE145133.008 TB011-1 SE145133.009 TB008-1 SE145133.010 TB008-1 SE145133.011 Tip Sinke SE145133.012	TB007-1 SE145133.010 % TB008-1 SE145133.011 % Trip Blank SE145133.012 % Trip Spike SE145133.013 % TB006-1 SE145133.003 % TB006-1 SE145133.004 % TB005-1 SE145133.005 % TB009-1 SE145133.006 % TB010-1 SE145133.008 % TB011-1 SE145133.009 % TB007-1 SE145133.010 % TB008-1 SE145133.010 % TB008-1 SE145133.010 % TB008-1 SE145133.011 %	TB007-1 SE145133.010 % 60 - 130% TB008-1 SE145133.011 % 60 - 130% Trip Blank SE145133.012 % 60 - 130% Trip Spike SE145133.013 % 60 - 130% TB006-1 SE145133.003 % 60 - 130% TB006-1 SE145133.004 % 60 - 130% TB005-1 SE145133.005 % 60 - 130% TB009-1 SE145133.006 % 60 - 130% TB010-1 SE145133.006 % 60 - 130% TB010-1 SE145133.007 % 60 - 130% TB011-1 SE145133.008 % 60 - 130% TB007-1 SE145133.009 % 60 - 130% TB008-1 SE145133.010 % 60 - 130% TB008-1 SE145133.011 % 60 - 130% TB088-1 SE145133.012 % 60 - 130%	

Parameter Sample Name Sample Number Criteria Recovery % Bromofluorobenzene (Surrogate) TB012-1 SE145133.003 60 - 130% 94 % TB006-1 SE145133.004 % 60 - 130% 90 TB005-1 SE145133.005 % 60 - 130% 90 TB009-1 SE145133.006 60 - 130% 94 % TB010-1 SE145133.007 % 60 - 130% 96 QA1 SE145133.008 % 60 - 130% 93 TB011-1 SE145133.009 60 - 130% 96 % TB007-1 SE145133.010 % 60 - 130% 92 TB008-1 SE145133.011 % 60 - 130% 95 d4-1,2-dichloroethane (Surrogate) TB012-1 SE145133.003 60 - 130% % 81 TB006-1 SE145133.004 % 60 - 130% 90 TB005-1 SE145133.005 % 60 - 130% 87 TB009-1 73 SE145133.006 % 60 - 130% TB010-1 SE145133.007 60 - 130% % 86 QA1 SE145133.008 % 60 - 130% 81 TB011-1 SE145133.009 % 60 - 130% 79 TB007-1 SE145133.010 % 60 - 130% 87 TB008-1 SE145133.011 % 60 - 130% 80 d8-toluene (Surrogate) TB012-1 SE145133.003 60 - 130% 89 % TB006-1 SE145133.004 % 60 - 130% 103 TB005-1 SE145133.005 % 60 - 130% 98 TB009-1 SE145133.006 % 60 - 130% 80 TB010-1 SE145133.007 % 60 - 130% 96 QA1 SE145133.008 % 60 - 130% 92 TB011-1 SE145133.009 88 % 60 - 130% TB007-1 SE145133.010 % 60 - 130% 95 TB008-1 SE145133.011 % 60 - 130% 87 Dibromofluoromethane (Surrogate) TB012-1 SE145133.003 60 - 130% 76 % TB006-1 60 - 130% SE145133.004 % 88 TB005-1 SE145133.005 % 60 - 130% 83 72 TB009-1 SE145133.006 % 60 - 130% 60 - 130% TB010-1 SE145133.007 % 84 QA1 SE145133.008 % 60 - 130% 79 TB011-1 SE145133.009 % 60 - 130% 75 TB007-1 SE145133.010 60 - 130% % 86 TB008-1 SE145133.011 % 60 - 130% 78

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Meth	od: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB088240.001	Mercury	mg/kg	0.01	<0.01

OC Pesticides in Soil

OC Pesticides in Soil			Method: ME-	(AU)-[ENV]AN400/AN420
Sample Number	Parameter	Units	LOR	Result
LB088018.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
OP Pesticides in Soil			Method: ME-	(AU)-[ENV]AN400/AN42
Sample Number	Parameter	Units	LOR	Result
LB088018.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
		mg/ka	0.2	<0.2
Surrogates	Azinphos-methyl (Guthion) 2-fluorobiphenyl (Surrogate)	mg/kg %	0.2	<0.2

PAH (Polynuclear Aromatic Hydrocarbo	ons) in Soil		Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB088018.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

SE145133 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

• •	natic Hydrocarbons) in Soil				ethod: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB088018.001		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	92
		2-fluorobiphenyl (Surrogate)	%	-	92
		d14-p-terphenyl (Surrogate)	%	-	122
CBs in Soil				Method: I	ME-(AU)-[ENV]AN400/AN4
Sample Number		Parameter	Units	LOR	Result
B088018.001		Arochlor 1016	mg/kg	0.2	<0.2
		Arochlor 1221	mg/kg	0.2	<0.2
		Arochlor 1232	mg/kg	0.2	<0.2
		Arochlor 1242	mg/kg	0.2	<0.2
		Arochlor 1248	mg/kg	0.2	<0.2
		Arochlor 1254	mg/kg	0.2	<0.2
		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
cluble Anions in Soil 1	from 1:2 DI Extract by Ion	Chromatography		м	ethod: ME-(AU)-[ENV]AN

Speciated Phenols in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result
B088018.001	Phenol	mg/kg	0.5	<0.5
	2-methyl phenol (o-cresol)	mg/kg	0.5	<0.5
	3/4-methyl phenol (m/p-cresol)	mg/kg	1	<1
	2-chlorophenol	mg/kg	0.5	<0.5
	2,4-dimethylphenol	mg/kg	0.5	<0.5
	2,6-dichlorophenol	mg/kg	0.5	<0.5
	2,4-dichlorophenol	mg/kg	0.5	<0.5
	2,4,6-trichlorophenol	mg/kg	0.5	<0.5
	2-nitrophenol	mg/kg	0.5	<0.5
	4-nitrophenol	mg/kg	1	<1
	2,4,5-trichlorophenol	mg/kg	0.5	<0.5
	2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1
	Pentachlorophenol	mg/kg	0.5	<0.5
	2,4-dinitrophenol	mg/kg	2	<2
	4-chloro-3-methylphenol	mg/kg	2	<2
Surrogates	2,4,6-Tribromophenol (Surrogate)	%	-	95
	d5-phenol (Surrogate)	%	-	76
tal Recoverable Metals in Soil by ICPOES			Method: ME	(AU)-[ENV]AN040/AN
ample Number	Parameter	Units	LOR	Result
D000007.00/			_	

LB088227.001	Arsenic, As		mg/kg	3	<3
	Cadmium, Cd		mg/kg	0.3	<0.3
	Chromium, Cr		mg/kg	0.3	<0.3
	Copper, Cu		mg/kg	0.5	<0.5
	Lead, Pb		mg/kg	1	<1
	Nickel, Ni		mg/kg	0.5	<0.5
	Zinc, Zn		mg/kg	0.5	<0.5
TRH (Total Recoverable Hydrocarbons) in Soil				Metho	od: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB088018.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

TRH (Total Recoveral	ble Hydrocarbons) in Soil (contir	nued)		Meth	od: ME-(AU)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result
LB088018.001		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
VOC's in Soil				Method: ME-	(AU)-[ENV]AN433/AN434
Sample Number		Parameter	Units	LOR	Result
LB088081.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	90
		d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	93
		Bromofluorobenzene (Surrogate)	%	-	96
	Totals	Total BTEX*	mg/kg	0.6	<0.6
Volatile Petroleum Hy	drocarbons in Soil		Ν	lethod: ME-(AU)-[E	NV]AN433/AN434/AN410
Sample Number		Parameter	Units	LOR	Result
LB088081.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	90
		d4-1,2-dichloroethane (Surrogate)	%	-	99
		d8-toluene (Surrogate)	%	-	93

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	al Duplicate Parameter							
					Meth	od: ME-(AU)-[ENVJAN312	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE145133.007		Mercury	mg/kg	0.01	0.01	0.02	200	0

Moisture Content

Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original I	Duplicate	Criteria %	RPD %
SE145133.004	LB088089.011	% Moisture	%w/w	0.5	9.9	8.9	41	10
SE145139.002	LB088089.022	% Moisture	%w/w	0.5	18	18	36	4
SE145150.006	LB088089.033	% Moisture	%w/w	0.5	19.2644483362	18.75	35	3
SE145150.013	LB088089.041	% Moisture	%w/w	0.5	12.78195488722	.033195020	7 38	6
OC Pesticides in §	Soil			M	lethod: ME	-(AU)-IENVIAI	N400/AN420	

C Pesticides in S	OII						Method: ME-		N400/AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
E145133.011	LB088018.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	0	200	0	
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
		Endrin	mg/kg	0.2	<0.2	0	200	0	
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin		0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Cumenstee		mg/kg	- 0.1		0.147	30	2
E145139.001	LB088018.030	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate) Hexachlorobenzene (HCB)	mg/kg mg/kg	0.1	0.15 <0.1	0.147	200	2
E145139.001	LB000010.030		Alpha BHC		0.1	<0.1	0	200	0
				mg/kg			0	200	0
			Lindane	mg/kg	0.1	<0.1			
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE145139.001	LB088018.030		p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
143133.001	EB000010.000		Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor		0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	C
			Isodrin	mg/kg mg/kg	0.1	<0.1	0	200	C
			Mirex		0.1	<0.1	0	200	C
		Currenstee		mg/kg		0.15	0.168	30	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15			
P Pesticides in S	oil							-(AU)-[ENV]A	N400//
Priginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
E145133.011	LB088018.014		Dichlorvos	mg/kg	0.5	<0.5	0.02	200	(
			Dimethoate	mg/kg	0.5	<0.5	0	200	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0.01	200	(
			Fenitrothion	mg/kg	0.2	<0.2	0	200	
			Malathion	mg/kg	0.2	<0.2	0	200	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0.02	200	
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	
			Methidathion	mg/kg	0.5	<0.5	0.03	200	
			Ethion	mg/kg	0.2	<0.2	0	200	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	
		Sunsgatos	d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.53	30	
E145139.001	LB088018.023		Dichlorvos	mg/kg	0.5	<0.5	0.01	200	
E 140 100.001	20000010.020		Dimethoate	mg/kg	0.5	<0.5	0	200	
			Diazinon (Dimpylate)		0.5	<0.5	0.01	200	
			Fenitrothion	mg/kg	0.2	<0.2	0.01	200	
				mg/kg					
			Malathion	mg/kg	0.2	<0.2	0	200	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	0.01	200	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	0	200	
			Bromophos Ethyl	mg/kg	0.2	<0.2	0.02	200	
			Methidathion	mg/kg	0.5	<0.5	0	200	
			Ethion	mg/kg	0.2	<0.2	0	200	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	0	200	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.42	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.54	30	
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	nod: ME-(AU)-	(ENV)
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
E145133.011	LB088018.014		Naphthalene	mg/kg	0.1	<0.1	0	200	
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	
			Acenaphthene	mg/kg	0.1	<0.1	0	200	
			Fluorene	mg/kg	0.1	<0.1	0	200	
			Phenanthrene	mg/kg	0.1	<0.1	0	200	
			Anthracene	mg/kg	0.1	<0.1	0	200	
			Fluoranthene	mg/kg	0.1	<0.1	0	200	
			Pyrene		0.1	<0.1	0	200	
				mg/kg					
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	
			Chrysene	mg/kg	0.1	<0.1	0	200	
			Depres (h 2 i) fluere pth e p e		0.4	-0.1	0	000	

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

TEQ (mg/kg)

TEQ (mg/kg)

TEQ (mg/kg)

mg/kg

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.3

0.2

0.8

< 0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

<0.2

<0.3

<0.2

< 0.8

0

0

0.01

0

0

0

0

0.242

0.121

0.02

200

200

200

200

200

200

200

134

175

200

Benzo(b&j)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Benzo(ghi)perylene

Total PAH

Dibenzo(a&h)anthracene

Carcinogenic PAHs, BaP TEQ <LOR=0*

Carcinogenic PAHs, BaP TEQ <LOR=LOR*

Carcinogenic PAHs, BaP TEQ <LOR=LOR/2*

Benzo(a)pyrene

0

0

0

0

0

0

0

0

0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Aromatic Hydrocarbo Duplicate			Units	LOR	Original		hod: ME-(AU)- Criteria %	RPD
		Sumerator	Parameter						
SE145133.011	LB088018.014	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.39	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	0
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.53	30	2
SE145139.001	LB088018.023		Naphthalene	mg/kg	0.1	<0.1	0	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0	200	0
			Phenanthrene	mg/kg	0.1	<0.1	0	200	0
			Anthracene	mg/kg	0.1	<0.1	0	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Pyrene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	0	200	0
			Chrysene	mg/kg	0.1	<0.1	0	200	0
			Benzo(b&j)fluoranthene		0.1	<0.1	0	200	0
				mg/kg					
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	0	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0	200	0
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0*<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
			Total PAH	mg/kg	0.8	<0.8	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	0
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.42	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.54	30	0
CBs in Soil							Method: ME	E-(AU)-[ENV]A	N400/A
Original	Duplicate		Parameter	Units	LOR	Original	Dunlicate	Criteria %	RPD
SE145133.011	LB088018.013		Arochlor 1016		0.2	<0.2	0	200	0
3E145135.011	LB000010.013			mg/kg					
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232						
				mg/kg	0.2	<0.2	0	200	0
			Arochlor 1242	mg/kg mg/kg	0.2 0.2	<0.2	0	200	0
									0
			Arochlor 1242	mg/kg	0.2	<0.2	0 0 0	200	0
			Arochlor 1242 Arochlor 1248	mg/kg mg/kg	0.2	<0.2 <0.2	0 0	200 200	0 0 0 0
			Arochlor 1242 Arochlor 1248 Arochlor 1254	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 <0.2 <0.2	0 0 0	200 200 200	0 0 0
			Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2	0 0 0 0	200 200 200 200	0 0 0 0
			Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0 0	200 200 200 200 200	0 0 0 0 0
		Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0 0 0	200 200 200 200 200 200 200	0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 -	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0	0 0 0 0 0 0 0 0 0 0 0 0.147	200 200 200 200 200 200 200 200 30	0 0 0 0 0 0 0 2
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2	0 0 0 0 0 0 0 0 0 0.147 0	200 200 200 200 200 200 200 30 200	0 0 0 0 0 0 0 0 2 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <1 0 <0.2 <0.2	0 0 0 0 0 0 0 0 0.147 0 0	200 200 200 200 200 200 200 30 200 200	0 0 0 0 0 0 0 2 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0 0 0 0 0 0.147 0 0 0	200 200 200 200 200 200 200 30 200 200 2	0 0 0 0 0 0 0 2 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1. 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0 0 0 0 0 0 0 0.147 0 0 0 0 0 0	200 200 200 200 200 200 200 30 200 200 2	0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1242 Arochlor 1254	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1242 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE145139.001	LB088018.022	Surrogates	Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1262	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1263 Total PCBs (Arochlors)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Speciated Phenols	s in Soil		Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Speciated Phenok Original	s in Soll Duplicate		Arochlor 1242 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1242 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg </td <td>0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2</td> <td><0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>200 200 200 200 200 200 200 200 200 200</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	0.2 0.2 0.2 0.2 0.2 0.2 1 - - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Speciated Phenok Original	s in Soil		Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 121 Arochlor 1221 Arochlor 1221 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Speciated Phenok Original	s in Soll Duplicate		Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 121 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Speciated Phenok Original	s in Soll Duplicate		Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1248 Arochlor 1254 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Speciated Phenok Original	s in Soll Duplicate		Arochlor 1242 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1248 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.5 <1.5 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE145139.001 Speciated Phenok Original SE145133.011	s in Soll Duplicate		Arochlor 1242 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 121 Arochlor 1221 Arochlor 1221 Arochlor 1221 Arochlor 1221 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arochlor 1262 Arochlor 1263 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <1 0 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s <mark>peciated Phenok</mark> Original	s in Soll Duplicate		Arochlor 1242 Arochlor 1254 Arochlor 1250 Arochlor 1260 Arochlor 1262 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate) Arochlor 1016 Arochlor 1221 Arochlor 1222 Arochlor 1248 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1260 Arochlor 1268 Total PCBs (Arochlors) Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 1 - 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.5 <0.5 <1.5 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

poolatou i nonoio	in Soil (continued)						Meur	od: ME-(AU)-	[ENV]AI
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E145133.011	LB088018.012		2,6-dichlorophenol	mg/kg	0.5	<0.5	0	200	0
			2,4-dichlorophenol	mg/kg	0.5	<0.5	0	200	0
			2,4,6-trichlorophenol	mg/kg	0.5	<0.5	0	200	0
			2-nitrophenol	mg/kg	0.5	<0.5	0	200	0
			4-nitrophenol	mg/kg	1	<1	0	200	0
			2,4,5-trichlorophenol	mg/kg	0.5	<0.5	0	200	0
			2,3,4,6/2,3,5,6-tetrachlorophenol	mg/kg	1	<1	0	200	0
			Pentachlorophenol	mg/kg	0.5	<0.5	0	200	0
			2,4-dinitrophenol	mg/kg	2	<2	0	200	0
			4-chloro-3-methylphenol	mg/kg	2	<2	0	200	0
		Surrogates	2,4,6-Tribromophenol (Surrogate)		-	4.4	4.43	30	0
		Surroyates		mg/kg				30	
			d5-phenol (Surrogate)	mg/kg	-	1.8	1.61		11
otal Recoverable	Metals in Soil by ICI	POES					Method: ME	-(AU)-[ENV]A	N040/A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE145133.010	LB088227.014		Arsenic, As	mg/kg	3	5	5	51	4
			Cadmium, Cd	mg/kg	0.3	0.3	0.3	118	1
			Chromium, Cr	mg/kg	0.3	19	18	33	2
			Copper, Cu	mg/kg	0.5	14	16	33	10
			Lead, Pb	mg/kg	1	14	15	37	4
			Nickel, Ni	mg/kg	0.5	15	15	37	1
			Zinc, Zn	mg/kg	0.5	120	120	32	3
	1 0000007 004		Cadmium, Cd						13
SE145150.004	LB088227.024			mg/kg	0.3		90.3426953856		
			Chromium, Cr	mg/kg	0.3		391.155261851		22
			Copper, Cu	mg/kg	0.5		92.7285745693		41
			Lead, Pb	mg/kg	1		865.397924752		26
			Zinc, Zn	mg/kg	0.5	14.829731651	122.364044975	2 45	18
RH (Total Recove	erable Hydrocarbons) in Soll					Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE145133.011	LB088018.014		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total		110	<110	0	200	0
			TRH C10-C40 Total	mg/kg		<210	0	200	0
				mg/kg	210				
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
SE145139.001	LB088018.023		TRH C10-C14	mg/kg	20	<20	0	200	0
			TRH C15-C28	mg/kg	45	<45	0	200	0
			TRH C29-C36	mg/kg	45	<45	0	200	0
			TRH C37-C40	mg/kg	100	<100	0	200	0
			TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0
OC's in Soil			· ·					-(AU)-[ENV]A	
								· · · ·	
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
E145133.011	LB088081.026	Monocyclic	Benzene	mg/kg	0.1	<0.1	0.01	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.01	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0	200	0
			o-xylene	mg/kg	0.1	<0.1	0	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.06	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	4.52	50	14
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	4.77	50	18

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE145133.011	LB088081.026	Surrogates	Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	4.22	50	12
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	0	200	0
			Total BTEX*	mg/kg	0.6	<0.6	0.02	200	0
SE145164.004	LB088081.025	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.8	4.1	50	7
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.1	4.5	50	9
			d8-toluene (Surrogate)	mg/kg	-	3.9	4.2	50	8
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.7	4.5	50	4
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX*	mg/kg	0.6	<0.6	<0.6	200	0
									0
	Hydrocarbons in Sol	1	Parameter			Metho	d: ME-(AU)-[8	ENVJAN433/A	N434/AN4
Original	Duplicate	1	Parameter	Units	LOR	Metho Original	d: ME-(AU)-[E Duplicate	ENVJAN433/A	N434/AN4 RPD %
Original	-	1	TRH C6-C10	Units mg/kg	LOR 25	Metho Original <25	d: ME-(AU)-[E Duplicate 3.49	ENVJAN433/A Criteria % 200	N434/AN4 RPD % 0
	Duplicate		TRH C6-C10 TRH C6-C9	Units mg/kg mg/kg	LOR	Metho Original <25 <20	d: ME-(AU)-[P Duplicate 3.49 3.29	ENVJAN433/AI Criteria % 200 200	N434/AN4 RPD % 0 0
Original	Duplicate	Il Surrogates	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg	LOR 25 20	Method Original <25 <20 3.9	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52	ENVJAN433/AI Criteria % 200 200 30	N434/AN4 RPD % 0 0 14
Original	Duplicate		TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg	LOR 25 20	Method Original <25 <20 3.9 4.0	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86	Criteria % 200 200 30 30 30	N434/AN4 RPD % 0 0 14 19
Original	Duplicate		TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 -	Method Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33	Criteria % 200 200 30 30 30 30	N434/AN4 RPD % 0 0 14 19 1
Original	Duplicate	Surrogates	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - -	Method Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86	ENVJAN433/AJ Criteria % 200 200 30 30 30 30 30 30	N434/AN4 RPD % 0 0 14 19 1 12
Original	Duplicate		TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1	Metho Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22 0	ENVJAN433/AI Criteria % 200 200 30 30 30 30 30 30 200	N434/AN4 RPD % 0 0 14 19 1 12 0
Original SE145133.011	Duplicate	Surrogates	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1 25	Method Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22	ENVJAN433/AJ Criteria % 200 200 30 30 30 30 30 30	N434/AN4 RPD % 0 0 14 19 1 12
Original SE145133.011	Duplicate LB088081.026	Surrogates	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1 25 25	Metho Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22 0 3.48	ENV[AN433/Al Criteria % 200 200 30 30 30 30 30 200 200 200 200	N434/AN/ RPD % 0 0 14 19 1 12 0 0 0 0 0
Original SE145133.011	Duplicate LB088081.026	Surrogates VPH F Bands	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1 25	Metho Original <25 <20 3.9 4.0 4.4 4.8 <0.1 <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22 0 3.48 0	ENVIAN433/AI Criteria % 200 30 30 30 30 30 200 200	N434/AN RPD % 0 14 19 1 12 0 0 0
Original SE145133.011	Duplicate LB088081.026	Surrogates	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1 25 25 25 20	Methor Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22 0 3.48 0 0 0	ENV[AN433/Al Criteria % 200 200 30 30 30 30 30 200 200 200 200	N434/AN RPD % 0 0 14 19 1 12 0 0 0 0 0 0 0
Original SE145133.011	Duplicate LB088081.026	Surrogates VPH F Bands	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - 0.1 25 25 20 -	Metho Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22 0 3.48 0 0 3.48 0 0 4.07	ENV[AN433/Al Criteria % 200 200 30 30 30 30 30 200 200 200 200	N434/AN/ RPD % 0 0 14 19 1 12 0 0 0 0 0 0 7
Original SE145133.011	Duplicate LB088081.026	Surrogates VPH F Bands	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - - 0.1 25 25 20 - - -	Metho Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.33 4.22 0 3.48 0 0 4.07 4.52	ENV[AN433/Al Criteria % 200 200 30 30 30 30 30 200 200 200 200	N434/AN/ RPD % 0 0 14 19 1 12 0 0 0 0 0 0 7 9
Original	Duplicate LB088081.026	Surrogates VPH F Bands	TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 25 20 - - - - 0.1 25 25 20 - - - - -	Metho Original <25	d: ME-(AU)-[E Duplicate 3.49 3.29 4.52 4.86 4.33 4.22 0 3.48 0 0 3.48 0 0 4.07 4.52 4.15	ENV[AN433/Al Criteria % 200 200 30 30 30 30 200 200 200 200 200	N434/AN/ RPD % 0 14 19 1 12 0 0 0 0 0 7 9 8

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					1	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088240.002	Mercury	mg/kg	0.01	0.20	0.2	70 - 130	101

OC Pesticides in So	bil					Method:	ME-(AU)-[EN	/JAN400/AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	96
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	98
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	93
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	93
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	99
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	91
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	95
OP Pesticides in So	li					Method:	ME-(AU)-[EN	/JAN400/AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		Dichlorvos	mg/kg	0.5	1.5	2	60 - 140	74
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	92
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	87
		Ethion	mg/kg	0.2	1.6	2	60 - 140	81
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
PAH (Polynuclear A	vromatic Hydroca	arbons) in Soll				N	/lethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		Naphthalene	mg/kg	0.1	4.2	4	60 - 140	105

LD000010.002	Napritraierie	mg/kg	0.1	4.2	4	60 - 140	105
	Acenaphthylene	mg/kg	0.1	4.2	4	60 - 140	104
	Acenaphthene	mg/kg	0.1	4.2	4	60 - 140	104
	Phenanthrene	mg/kg	0.1	4.2	4	60 - 140	105
	Anthracene	mg/kg	0.1	4.5	4	60 - 140	112
	Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	114
	Pyrene	mg/kg	0.1	4.3	4	60 - 140	107
	Benzo(a)pyrene	mg/kg	0.1	4.9	4	60 - 140	122
Surroga	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	86
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
PCBs in Soil					Method:	ME-(AU)-[EN\	/JAN400/AN420
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002	Arochlor 1260	mg/kg	0.2	0.4	0.4	60 - 140	99

Soluble Anions in Soil from 1	1:2 DI Extract by Ion Chromatography				I	Method: ME-(A	U)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088190.002	Chloride	mg/kg	0.25	NA	40	70 - 130	107
	Sulphate	mg/kg	0.5	NA	40	70 - 130	104

Speciated Phenols in	n Soil					N	lethod: ME-(A	U)-[ENV]AN42
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		Phenol	mg/kg	0.5	0.8	1	70 - 130	80
		2,4-dichlorophenol	mg/kg	0.5	0.8	1	70 - 130	75
		2,4,6-trichlorophenol	mg/kg	0.5	0.9	1	70 - 130	90
		Pentachlorophenol	mg/kg	0.5	0.7	1	70 - 130	70
	Surrogates	2,4,6-Tribromophenol (Surrogate)	mg/kg	-	4.8	5	40 - 130	97
		d5-phenol (Surrogate)	mg/kg	-	1.6	2	40 - 130	81
Total Recoverable M	letals in Soil by	CPOES				Method:	ME-(AU)-[EN\	/JAN040/AN32
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088227.002		Arsenic, As	mg/kg	3	48	50	80 - 120	97
		Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	101
		Chromium, Cr	mg/kg	0.3	50	50	80 - 120	100
		Copper, Cu	mg/kg	0.5	51	50	80 - 120	102

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Recoverable	Metals in Soil by I	CPOES (continued)				Method:	ME-(AU)-[EN\	/]AN040/AN32
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088227.002		Lead, Pb	mg/kg	1	50	50	80 - 120	99
		Nickel, Ni	mg/kg	0.5	50	50	80 - 120	99
		Zinc, Zn	mg/kg	0.5	51	50	80 - 120	102
TRH (Total Recove	rable Hydrocarbo	ns) in Soli				N	lethod: ME-(A	U)-[ENV]AN40
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088018.002		TRH C10-C14	mg/kg	20	39	40	60 - 140	98
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	95
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	78
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	40	40	60 - 140	100
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	88
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	70
VOC's in Soil						Method:	ME-(AU)-[EN	/JAN433/AN43
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088081.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	82
	Aromatic	Toluene	mg/kg	0.1	2.4	2.9	60 - 140	82
		Ethylbenzene	mg/kg	0.1	2.2	2.9	60 - 140	74
		m/p-xylene	mg/kg	0.2	4.5	5.8	60 - 140	77
		o-xylene	mg/kg	0.1	2.2	2.9	60 - 140	76
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	97
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
Volatile Petroleum	Hydrocarbons in S	Soil				Nethod: ME-(Al	J)-[ENV]AN43	3/AN434/AN41
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB088081.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	85
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	71
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.4	5	60 - 140	88
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	97
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	102

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Metho	od: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145078.023	LB088240.004	Mercury	mg/kg	0.01	0.20	0.05196198402	0.2	72

OC Pesticides in Soil

OC Pesticides in	Soil						Method: M	/IE-(AU)-[ENV]
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1		-
			Alpha BHC	mg/kg	0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	<0.1	0.2	90
			Aldrin	mg/kg	0.1	<0.1	0.2	95
			Beta BHC	mg/kg	0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	<0.1	0.2	89
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	0.2	92
			Endrin	mg/kg	0.2	<0.2	0.2	96
			o,p'-DDD	mg/kg	0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	76
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	-	95

OP Pesticides in	Soil						Method: M	IE-(AU)-[ENV]AN400/AI
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004		Dichlorvos	mg/kg	0.5	<0.5	2	110
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	93
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	96
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	91
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	82
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

PAH (Polynuclea	AH (Polynuclear Aromatic Hydrocarbons) in Soli					М	ethod: ME-(AU)-[ENV]AN
QC Sample	Sample Number	Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004	Naphthalene	mg/kg	0.1	<0.1	4	107
		2-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		1-methylnaphthalene	mg/kg	0.1	<0.1	-	-
		Acenaphthylene	mg/kg	0.1	<0.1	4	106
		Acenaphthene	mg/kg	0.1	<0.1	4	103
		Fluorene	mg/kg	0.1	<0.1	-	-
		Phenanthrene	mg/kg	0.1	<0.1	4	100
		Anthracene	mg/kg	0.1	<0.1	4	106
		Fluoranthene	mg/kg	0.1	<0.1	4	112

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004		Pyrene	mg/kg	0.1	<0.1	4	105
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	115
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
			Dibenzo(a&h)anthracene	mg/kg	0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0*<>	TEQ	0.2	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor*<>	TEQ (mg/kg)	0.3	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-
			Total PAH	mg/kg	0.8	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	-	86
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	-	82
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96

PCBs in Soil							Method: M	E-(AU)-[ENV]	AN400/AN420
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%	
SE145133.003	LB088018.004		Arochlor 1016	mg/kg	0.2	<0.2	-	-	
			Arochlor 1221	mg/kg	0.2	<0.2	-	-	
			Arochlor 1232	mg/kg	0.2	<0.2	-	-	
			Arochlor 1242	mg/kg	0.2	<0.2	-	-	
			Arochlor 1248	mg/kg	0.2	<0.2	-	-	
			Arochlor 1254	mg/kg	0.2	<0.2	-	-	
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	92	
			Arochlor 1262	mg/kg	0.2	<0.2	-	-	
			Arochlor 1268	mg/kg	0.2	<0.2	-	-	
			Total PCBs (Arochlors)	mg/kg	1	<1	-	-	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	97]
Total Recoverab	le Metals in Soil by IC	POES					Method: M	E-(AU)-[ENV]	AN040/AN32
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145098.003	LB088227.004		Cadmium, Cd	mg/kg	0.3	48	0.78540879729	50	94

TRH (Total Recoverable Hydrocarbons) in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE145133.003	LB088018.004		TRH C10-C14	mg/kg	20	<20	40	108
			TRH C15-C28	mg/kg	45	<45	40	108
			TRH C29-C36	mg/kg	45	<45	40	78
			TRH C37-C40	mg/kg	100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	-	-
			TRH C10-C40 Total	mg/kg	210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	40	108
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	40	98
			TRH >C34-C40 (F4)	mg/kg	120	<120	-	-

VOC's in Soil							Method: ME	-(AU)-[ENV]	AN433/AN434
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145133.003	LB088081.004	Monocyclic	Benzene	mg/kg	0.1	1.9	<0.1	2.9	67
		Aromatic	Toluene	mg/kg	0.1	2.1	<0.1	2.9	71
			Ethylbenzene	mg/kg	0.1	2.0	<0.1	2.9	69
			m/p-xylene	mg/kg	0.2	4.4	<0.2	5.8	75
			o-xylene	mg/kg	0.1	2.1	<0.1	2.9	73
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	3.8	-	91
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.0	-	92
			d8-toluene (Surrogate)	mg/kg	-	5.4	4.5	-	108
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	4.7	-	117

Method: ME-(AU)-[ENV]AN403

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (ca	ontinued)						Method: ME	-(AU)-[ENV	JAN433/AN434
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145133.003	LB088081.004	Totals	Total Xylenes*	mg/kg	0.3	6.5	<0.3	-	-
			Total BTEX*	mg/kg	0.6	12	<0.6	-	-
Volatile Petroleu	m Hydrocarbons in Sc	lic				Met	nod: ME-(AU)-[l	ENVJAN433	/AN434/AN410
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE145133.003	LB088081.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	82
			TRH C6-C9	mg/kg	20	<20	<20	23.2	77
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	3.8	-	91
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	4.0	-	92
			d8-toluene (Surrogate)	mg/kg	-	5.4	4.5	-	108
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.9	4.7	-	117
		VPH F	Benzene (F0)	mg/kg	0.1	1.9	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	107

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/ Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

email: sydney@envirolab.com.au envirolab.com.au

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

136251

Client: Cardno Geotech Solutions PO Box 4224 Edgeworth NSW 2285 Attention: Alireza Mohiti Sample log in details: Your Reference: No. of samples: Date samples received / completed instructions received 22/10/15

CERTIFICATE OF ANALYSIS

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 29/10/15
 / 27/10/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
TRHC6 - C9	mg/kg	<25
TRHC 6 - C10	mg/kg	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	104

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	23/10/2015
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	86

PAHs in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94

Organochlorine Pesticides in soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCMX	%	110

Organophosphorus Pesticides		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Ethion	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Parathion	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Surrogate TCMX	%	110

PCBs in Soil		
Our Reference:	UNITS	136251-1
Your Reference		QA2
Date Sampled		20/10/2015
Type of sample		soil
Date extracted	-	23/10/2015
Date analysed	-	24/10/2015
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Surrogate TCLMX	%	110

Acid Extractable metals in soil			
Our Reference:	UNITS	136251-1	
Your Reference		QA2	
Date Sampled		20/10/2015	
Type of sample		soil	
Date prepared	-	23/10/2015	
Date analysed	-	26/10/2015	
Arsenic	mg/kg	<4	
Cadmium	mg/kg	<0.4	
Chromium	mg/kg	5	
Copper	mg/kg	1	
Lead	mg/kg	4	
Mercury	mg/kg	<0.1	
Nickel	mg/kg	<1	
Zinc	mg/kg	42	

Moisture			
Our Reference:	UNITS	136251-1	
Your Reference		QA2	
Date Sampled		20/10/2015	
Type of sample		soil	
Date prepared	-	23/10/2015	
Date analysed	-	26/10/2015	
Moisture	%	9.1	

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:-
	 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			23/10/2	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			015 24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
TRHC6 - C9	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	110%
TRHC6 - C10	mg/kg	25	Org-016	<25	[NT]	[NT]	LCS-3	110%
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]	[NT]	LCS-3	116%
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]	[NT]	LCS-3	107%
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	108%
m+p-xylene	mg/kg	2	Org-016	~2	[NT]	[NT]	LCS-3	110%
o-Xylene	mg/kg	1	Org-016	<1	[NT]	[NT]	LCS-3	112%
naphthalene	mg/kg	1	Org-014	<1	[NT]	[NT]	[NR]	[NR]
·	туку %		Org-014 Org-016	115	[NT]	[NT]	LCS-3	113%
<i>Surrogate</i> aaa- Trifluorotoluene	/0			110	[141]	[[11]	203-3	11370
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
TRHC 10 - C14	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	107%
TRHC 15 - C28	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	99%
TRHC29 - C36	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	93%
TRH>C10-C16	mg/kg	50	Org-003	<50	[NT]	[NT]	LCS-3	107%
TRH>C16-C34	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	99%
TRH>C34-C40	mg/kg	100	Org-003	<100	[NT]	[NT]	LCS-3	93%
Surrogate o-Terphenyl	%		Org-003	91	[NT]	[NT]	LCS-3	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil				Diame	Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			23/10/2	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	_			015 24/10/2	[NT]	[NT]	LCS-3	24/10/2015
Narktholog		0.1	0.55 010	015	IN ITTI	IN ITT	1.00.0	00%
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	96%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	109%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	98%
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	97%
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	103%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	LCS-3	123%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]	[NT]	[NR]	[NR]

		Clie	nt Reference	e: 80	0514013	-		-
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]	[NT]	LCS-3	111%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	92	[NT]	[TN]	LCS-3	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
HCB	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	92%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	89%
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	96%
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	94%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	95%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	87%
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	98%
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	98%
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	91%
EndosulfanII	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	LCS-3	97%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-005	110	[NT]	[NT]	LCS-3	128%

		Clie	ent Referenc	e: 80	0514013			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	100%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	99%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	117%
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	104%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	119%
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	110%
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	LCS-3	74%
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%		Org-008	110	[NT]	[NT]	LCS-3	128%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015
Date analysed	-			24/10/2 015	[NT]	[NT]	LCS-3	24/10/2015
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	LCS-3	114%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		Org-006	110	[NT]	[NT]	LCS-3	112%

Client Reference: 80514013											
QUALITY CONTROL Acid Extractable metals	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery			
in soil											
Date prepared	-			23/10/2 015	[NT]	[NT]	LCS-3	23/10/2015			
Date analysed	-			26/10/2 015	[NT]	[NT]	LCS-3	26/10/2015			
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	[NT]	[NT]	LCS-3	113%			
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	[NT]	[NT]	LCS-3	107%			
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	107%			
Copper	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	107%			
Lead	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	108%			
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]	[NT]	LCS-3	119%			
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	105%			
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	[NT]	[NT]	LCS-3	107%			

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Proposed Residential Development, Bakali Rd, Forresters Beach

APPENDIX

SITE PHOTOGRAPHS

Photograph 1: OI 1 Table 3-1 of Report, Fill Stockpile

Photograph 2: OI 2 Table 3-1 of large fill stockpile

Photograph 3: OI 4 Table 3-1 of Report, abandoned residential dwelling

Photograph 4: OI 5 Table 3-1 of Report, scattered fibrous material

Photograph 5: OI 6 Table 3-1 of Report, Stockpile covered with vegetation

Photograph 6: OI 9 Table 3-1 of Report, household refuse and garden waste

Proposed Residential Development, Bakali Rd, Forresters Beach

APPENDIX

HISTORICAL DATA

GROUNDWATER DATA

NSW Office of Water Work Summary

GW202283

Licence: 20BL172870 Licence Status: ACTIVE Authorised Purpose(s): MONITORING BORE Intended Purpose(s): MONITORING BORE Work Type: Bore Work Status: Equipped Construct.Method: Owner Type: Local Govt Commenced Date: Final Depth: 8.00 m Completion Date: 25/06/2012 Drilled Depth: 10.50 m Contractor Name: NEALINGS DRILLING Driller: Unkown Unknown **Assistant Driller:** Property: N A 140 BELLEVUE ROAD TUMBI UMBI Standing Water Level: 6.000 2261 NSW GWMA: Salinity: GW Zone: Yield: Site Details Site Chosen By: Parish Cadastre County Form A: NORTH NORTH.31 11A//8857 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale: Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown Northing: 6303332.0 Easting: 356452.0 Latitude: 33°23'59.1"S Longitude: 151°27'23.1"E allwaterdata.water.nsw.gov.au/wgen/users/234161376//gw202283.wsr.htm

GS Map: -

MGA Zone: 0

Coordinate Source: GIS - Geographic Information System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	10.50	0			(Unknown)
1		Annulus	Concrete	0.00	0.05		50		
1		Annulus	Bentonite	0.05	0.50		50		
1		Annulus	Waterworn/Rounded	0.50	8.00		50		Graded
1		Backfill	Bentonite	8.00	10.50				
1	1	Casing		0.00	8.00	50			Seated
1	1	Opening	Slots	1.00	8.00	50		1	

Water Bearing Zones

rom m)	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth	Salinity (mg/L)
							(m)	

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	7.20	7.20	Fill; Sandy Silt, medium, grey to black, high organic content	Fill	
7.20	10.50		Sandy Clay; medium, subrounded, low plasticity, red mottled white, natural	Sandy Clay	

Remarks

25/06/2012: Form A Remarks:

Nat Carling, 25-June-2012; All details were provided by consultant on logs & location map.

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201721

Licence: 20BL172870 Licence Status: ACTIVE Authorised Purpose(s): MONITORING BORE Intended Purpose(s): MONITORING BORE Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Flight Owner Type: Local Govt **Commenced Date:** Final Depth: 15.00 m Completion Date: 16/04/2009 Drilled Depth: 15.00 m **Contractor Name:** Driller: Unkown Unknown **Assistant Driller:** Property: N A 140 BELLEVUE ROAD TUMBI UMBI Standing Water Level: 9.100 2261 NSW GWMA: Salinity: GW Zone: Yield: Site Details Site Chosen By: Parish Cadastre County Form A: NORTH NORTH.31 11A//8857 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale: Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown Northing: 6303240.0 Easting: 356411.0 Latitude: 33°24'02.0"S Longitude: 151°27'21.5"E allwaterdata.water.nsw.gov.au/wgen/users/234161376//gw201721.wsr.htm

GS Map: -

MGA Zone: 0

Coordinate Source: GPS - Global Positioning System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	15.00	100			Auger - Solid Flight
1		Annulus	Drill Cuttings	0.00	11.00	100	50		PL:Poured/Shovelled
1		Annulus	Bentonite	11.00	11.50	100	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	11.50	15.00	100	50		Graded, PL:Poured/Shovelled
1	1	Casing		0.00	15.00	50			Seated on Bottom
1	1	Opening	Slots	12.00	15.00	50		1	()

Water Bearing Zones

From	To	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
. ,	`	. ,		. ,	. ,	. ,	(m)	. ,	

Geologists Log

Drillers Log

From			Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	1.00		Fill; brown, sandy topsoil, with rock fragments (200mm)	Fill	
1.00	2.25	1.25	Silty Clay; red/light grey	Silty Clay	
2.25	5.25	3.00	Silty Clay; red/light grey, increasing moisture	Silty Clay	
5.25	7.25	2.00	Silty Clay; light grey, with ironstone fragments	Silty Clay	
7.25	8.25	1.00	Silty Clay; red/light grey, slightly increasing moisture	Silty Clay	
8.25	15.00	6.75	Silty Clay; reddish brown, medium moisture	Silty Clay	

Remarks

16/04/2009: Form A Remarks: Nat Carling, 3-May-2012; All details were provided on consultants log. *** End of GW201721 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW054153

Licence: 2	20BL113627	Licence Status: ACTIVE		
		Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC		
Work Type:	Bore open thru rock			
Work Status:				
Construct.Method:	Rotary Air			
Owner Type:	Private			
Commenced Date: Completion Date:	01/02/1981	Final Depth: 18.00 m Drilled Depth: 18.00 m		
Contractor Name:				
Driller:				
Assistant Driller:				
Property: GWMA: GW Zone:	-	Standing Water Level (m): Salinity Description: Good Yield (L/s):		
Site Details				
Site Chosen By:				
		County Form A: NORTH Licensed: NORTHUMBERLAND	Parish NORTH.031 KINCUMBER	Cadastre L3 DP26237 (8) Whole Lot 3//26237
Region: 10 -	Sydney South Coast	CMA Map: 9131-2S		
River Basin: 211 Area/District:	- MACQUARIE - TUGGERAH LAKES	Grid Zone:	Sc	ale:
Elevation: 0.00 Elevation Source: (Unk	m (A.H.D.) (nown)	Northing: 6303359.0 Easting: 356736.0		ıde: 33°23'58.3"S ıde: 151°27'34.1"E
GS Map: -		MGA Zone: 0	Coordinate Sou	rce:

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

H	ole	Pipe	Component	Туре	From (m)	To (m)		Inside Diameter (mm)	Interval	Details
	1	1	Casing	P.V.C.	0.00	12.00	155			Driven into Hole

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Type	S.W.L. (m)	(L/s)	 Duration (hr)	Salinity (mg/L)
12	.00 14.00	2.00	(Unknown)	5.70	0.48		

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	2.00	2.00	Soil	Soil	
2.00	12.00	10.00	Clay	Clay	
12.00	18.00	6.00	Sandstone Shale Water Supply	Sandstone	

Remarks

*** End of GW054153 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201938

Licence: 20BL170953 Licence Status: ACTIVE Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC Work Type: Bore Work Status: Supply Obtained Construct.Method: Rotary Mud Owner Type: Private Commenced Date: Final Depth: 18.00 m Completion Date: 22/03/2007 Drilled Depth: 18.00 m Contractor Name: Driller: Lloyd Norman Whitsed **Assistant Driller:** Property: Standing Water Level: 8.000 GWMA: Salinity: GW Zone: Yield: 0.250 Site Details Site Chosen By: County Parish Form A: NORTH NORTH.31 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown

GS Map: -

Area/District:

MGA Zone: 0

Northing: 6302010.0

Easting: 357145.0

Coordinate Source: GIS - Geographic

Latitude: 33°24'42.3"S

Longitude: 151°27'49.2"E

Cadastre

255//225178

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре		-	Outside Diameter		Interval	Details
						(mm)	(mm)		
1		Hole	Hole	0.00	18.00	175			Rotary Mud
1		Annulus	Waterworn/Rounded	3.00	18.00	175	125		Graded
1	1	Casing	Pvc Class 9	0.00	18.00	125			Seated on Bottom, Glued
1	1	Opening	Slots - Vertical	11.00	17.00	125		1	PVC Class 9, SL: 6.0mm, A: 1.50mm

Water Bearing Zones

	To (m)	Thickness (m)	518 -	S.W.L. (m)		(L/s)	 Duration (hr)	Salinity (mg/L)
9.00	11.00	2.00	Unknown	8.00	17.00	0.25		

Geologists Log Drillers Log

From (m)		Thickness (m)	Drillers Description	Geological Material	Comments
0.00			Sand	Sand	
9.00	10.00	1.00	Sand & organics - lost circulation - water cloudy	Sand	
10.00	14.00	4.00	Clay, heavy & Sand	Sand	
14.00	16.00	2.00	Clay, red	Clay	
16.00	18.00	2.00	Shale	Shale	

Remarks

22/03/2007: Form A Remarks: Nat Carling, 15-May-2012; Coordinates based on location map provided with the Form-A.

*** End of GW201938 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW201720

Licence: 20BL172870 Licence Status: ACTIVE Authorised Purpose(s): MONITORING BORE Intended Purpose(s): MONITORING BORE Work Type: Bore Work Status: Equipped Construct.Method: Auger - Solid Flight Owner Type: Local Govt **Commenced Date:** Final Depth: 13.50 m Completion Date: 16/04/2009 Drilled Depth: 13.50 m **Contractor Name:** Driller: Unkown Unknown **Assistant Driller:** Property: N A 140 BELLEVUE ROAD TUMBI UMBI Standing Water Level: 3.330 2261 NSW GWMA: Salinity: GW Zone: Yield: Site Details Site Chosen By: Parish Cadastre County Form A: NORTH NORTH.31 1130//787305 Licensed: Region: 20 - Hunter CMA Map: 9131-2S River Basin: 211 - MACQUARIE - TUGGERAH LAKES Grid Zone: Scale: Area/District:

Elevation: 0.00 m (A.H.D.) Elevation Source: Unknown Northing: 6303152.0 Easting: 356496.0 Latitude: 33°24'04.9"S Longitude: 151°27'24.7"E allwaterdata.water.nsw.gov.au/wgen/users/129150390//gw201720.wsr.htm

GS Map: -

MGA Zone: 0

Coordinate Source: GPS - Global Positioning System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре	From (m)	To (m)	Outside Diameter (mm)	Inside Diameter (mm)	Interval	Details
1		Hole	Hole	0.00	13.50	100			Auger - Solid Flight
1		Annulus	Drill Cuttings	0.00	10.00	100	50		PL:Poured/Shovelled
1		Annulus	Bentonite	10.00	10.50	100	50		PL:Poured/Shovelled
1		Annulus	Waterworn/Rounded	10.50	13.50	100	50		Graded, PL:Poured/Shovelled
1	1	Casing		0.00	13.50	50			Seated on Bottom
1	1	Opening	Slots	11.00	13.50	50		1	()

Water Bearing Zones

From	To	Thickness	WBZ Type	S.W.L.	D.D.L.	Yield	Hole	Duration	Salinity
(m)	(m)	(m)		(m)	(m)	(L/s)	Depth	(hr)	(mg/L)
, í	. ,	、 <i>,</i>		. ,	. ,	, ,	(m)	. ,	,

Geologists Log

Drillers Log

From	То	Thickness	Drillers Description	Geological Material	Comments
(m)	(m)	(m)			
0.00	0.50	0.50	Fill; light brown sandy soil	Fill	
0.50	2.25	1.75	Clay; red/light grey, with ironstone fragments	Clay	
2.25	3.75	1.50	Silty Clay; red/grey, medium moisture	Silty Clay	
3.75	6.75	3.00	Silty Clay; red/light grey, increasing moisture	Silty Clay	
6.75	13.50	6.75	Silty Clay; reddish brown, high moisture	Silty Clay	

Remarks

16/04/2009: Form A Remarks: Nat Carling, 3-May-2012; All details were provided on consultants log. Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

NSW Office of Water Work Summary

GW051860

Licence: 20BL110868

Licence Status: ACTIVE

Authorised Purpose(s): STOCK,DOMESTIC Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore

Work Status:

Construct.Method: Rotary Air

Owner Type: Private

Commenced Date: Completion Date: 01/11/1979

Contractor Name:

Driller:

Assistant Driller:

Property: N/A GWMA: -GW Zone: - Final Depth: 12.00 m Drilled Depth: 21.00 m

Standing Water Level (m): Salinity Description: Good Yield (L/s):

Site Details

Site Chosen By:

	County Form A: NORTH Licensed: NORTHUMBERLAND	ParishCadastreNORTH.031L4 DP26237 (8)KINCUMBERWhole Lot 4//26237		
Region: 10 - Sydney South Coast	CMA Map: 9131-2S			
River Basin: 211 - MACQUARIE - TUGGERAH LAKES Area/District:	Grid Zone:	Scale:		
Elevation: 0.00 m (A.H.D.) Elevation Source: (Unknown)	Northing: 6303370.0 Easting: 356802.0	Latitude: 33°23'58.0"S Longitude: 151°27'36.7"E		
GS Map: -	MGA Zone: 0	Coordinate Source:		

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

Hole	Pipe	Component	Туре			Diameter	 Interval	Details
1		Backfill	Backfill	12.00	21.00	155		
1	1	Casing	P.V.C.	0.00	12.00	125		
1	1	Opening	Slots - Vertical	6.00	12.00	125	1	Mechanically Slotted, A: 3.00mm

Water Bearing Zones

From (m)	To (m)	Thickness (m)	WBZ Туре	S.W.L. (m)	D.D.L. (m)	Yield (L/s)	Hole Depth (m)	Duration (hr)	Salinity (mg/L)
1.	00 11.00	10.00	Unconsolidated	3.00		0.06			

Geologists Log Drillers Log

From (m)		Thickness (m)	Drillers Description	Geological Material	Comments
0.00	1.00	1.00	Soil	Soil	
1.00	12.00	11.00	Clay Water Bearing	Clay	
12.00	21.00	9.00	Shale	Shale	

Remarks

*** End of GW051860 ***

Warning To Clients: This raw data has been supplied to the NSW Office of Water by drillers, licensees and other sources. The NOW does not verify the accuracy of this data. The data is presented for use by you at your own risk. You should consider verifying this data before relying on it. Professional hydrogeological advice should be sought in interpreting and using this data.

HISTORICAL AERIAL PHOTOGRAPHS

0

Forresters Beach NSW

Maas Parade-

mage © 2015 DigitalGlobe

minance

S149 CERTIFICATES

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140005
Certificate Date:	11 November 2015
Address:	985 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 3 DP: 101649
Parish:	Kincumber
County:	Northumberland
Assessment No:	515017
Receipt No:	
Parcel No:	429
Applicants Reference:	LOT: 3 DP: 101649
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979
Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140004
Certificate Date:	11 November 2015
Address:	959 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 18 DP: 23283
Parish:	Kincumber
County:	Northumberland
Assessment No:	702662
Receipt No:	
Parcel No:	17636
Applicants Reference:	LOT: 18 DP: 23283
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140002
Certificate Date:	11 November 2015
Address:	145 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 1 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	759977
Receipt No:	
Parcel No:	83803
Applicants Reference:	LOT: 1 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act* 1995 relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140003
Certificate Date:	11 November 2015
Address:	957 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 51 DP: 1028301
Parish:	Kincumber
County:	Northumberland
Assessment No:	786260
Receipt No:	
Parcel No:	86998
Applicants Reference:	LOT: 51 DP: 1028301
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS

(No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act* 1995 relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140000
Certificate Date:	11 November 2015
Address:	137 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 3 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	759995
Receipt No:	
Parcel No:	83805
Applicants Reference:	LOT: 3 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

No.
The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

This land has been identified as containing Estuarine Paperbark Scrub Forest. This community may qualify as the endangered ecological community Swamp Sclerophyll Forest on Coastal Floodplains as listed under Part 3 Schedule 1 of the Threatened Species Conservation Act 1995. The presence of this vegetation community may restrict the development potential of the land. The nature and extent of any threatened species or cultural heritage constraints should be determined following an assessment of the land by a qualified and experienced ecologist/consultant.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	140001
Certificate Date:	11 November 2015
Address:	143 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 2 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	759986
Receipt No:	
Parcel No:	83804
Applicants Reference:	LOT: 2 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act* 1995 relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	139999
Certificate Date:	11 November 2015
Address:	139 Bakali Road FORRESTERS BEACH
Lot Description:	LOT: 4 DP: 1000694
Parish:	Kincumber
County:	Northumberland
Assessment No:	760000
Receipt No:	
Parcel No:	83806
Applicants Reference:	LOT: 4 DP: 1000694
Applicants Email:	

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122 DEVELOPMENT PERMISSIBLE WITHOUT CONSENT Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas. Exempt development. DEVELOPMENT PERMISSIBLE WITH CONSENT Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals. Subdivision. PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

No.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The land is not affected by Road Widening Proposals.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

No.

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

 (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

Gosford City Council

PO Box 21 Gosford NSW 2250 DX 7211 Gosford

 Telephone
 02 4325 8222

 Facsimile
 02 4323 2477

goscity@gosford.nsw.gov.au www.gosford.nsw.gov.au www.facebook.com/GosfordCityCouncil www.twitter.com/gosford_council

ABN 78 303 458 861

PLANNING CERTIFICATE

Cardno NSW Pty Ltd - Gosford

Se34 207 Albany Street North GOSFORD NSW 2250

This Planning Certificate is issued in accordance with Section 149 of the *Environmental Planning* and Assessment Act, 1979

Certificate No:	139998
Certificate Date:	11 November 2015
Address:	987-991 The Entrance Road FORRESTERS BEACH
Lot Description:	LOT: 522 DP: 1077907
Parish:	Kincumber
County:	Northumberland
Assessment No:	515008
Receipt No:	
Parcel No:	91194
Applicants Reference:	LOT: 522 DP: 1077907
Applicants Email:	

Part 2 - Environmental Planning and Assessment Regulation 2000

1 NAMES OF RELEVANT PLANNING INSTRUMENTS and DCPS

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

Interim Development Order 122 gazetted 30/03/79 (as amended)

Specific Site State Environmental Planning Policies

State Environmental Planning Policy No. 71 - Coastal Protection

General Site State Environmental Planning Policies

ZONE 7(a) CONSERVATION AND SCENIC PROTECTION (CONSERVATION)UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development) 2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

ZONE 7(c2) CONSERVATION AND SCENIC PROTECTION (SCENIC PROTECTION - RURAL SMALL HOLDINGS) UNDER INTERIM DEVELOPMENT ORDER NO.122 State Environmental Planning Policy (State and Regional Development) 2011 State Environmental Planning Policy (Affordable Rental Housing) 2009 State Environmental Planning Policy (Exempt and Complying Development Codes) 2008 State Environmental Planning Policy (Infrastructure) 2007 State Environmental Planning Policy (Miscellaneous Consent Provisions) 2007 State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 State Environmental Planning Policy (Major Development)2005 State Environmental Planning Policy (Building Sustainability Index: BASIX) 2004 State Environmental Planning Policy No. 65 - Design Quality of Residential Flat Development State Environmental Planning Policy No. 64 - Advertising and Signage State Environmental Planning Policy No. 62 - Sustainable Aquaculture State Environmental Planning Policy No. 55 - Remediation of Land State Environmental Planning Policy No. 50 - Canal Estate Development State Environmental Planning Policy No. 44 - Koala Habitat Protection State Environmental Planning Policy No. 36 - Manufactured Home Estates State Environmental Planning Policy No. 33 - Hazardous and Offensive Development State Environmental Planning Policy No. 30 - Intensive Agriculture State Environmental Planning Policy No. 21 - Caravan Parks State Environmental Planning Policy No. 19 - Bushland in Urban Areas State Environmental Planning Policy No. 1 - Development Standards State Regional Planning Policy No. 9 - Extractive Industry (No 2-1995)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft State Environmental Planning Policy (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

Gosford Development Control Plan 2013

2 ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS

(a) to (d) is the zoning of the land and the land use table for each of the zones listed, including existing and proposed Local Environmental Plans in landuse tables.

Zone No.7(a) Conservation and Scenic Protection (Conservation) under Interim Development Order No.122

DEVELOPMENT PERMISSIBLE WITHOUT CONSENT

Development (other than exempt development) for the purpose of: home occupations; recreation areas.

Exempt development.

DEVELOPMENT PERMISSIBLE WITH CONSENT

Development (other than exempt development) for the purpose of: agriculture; bed and breakfast accommodation; dams; dwelling-houses; roads;

Subdivision.

PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

Zone No.7(c2) Conservation and Scenic Protection (Scenic Protection-Rural Small Holdings) under Interim Development Order No.122

DEVELOPMENT PERMISSIBLE WITHOUT CONSENT

Development (other than exempt development) for the purpose of: agriculture; home occupations; recreation areas.

Exempt development.

DEVELOPMENT PERMISSIBLE WITH CONSENT

Development (other than exempt development) for the purpose of: animal establishments; bed and breakfast accommodation; child care centres; dams; dual occupancies-attached; dwelling-houses; educational establishments; home industries; horse establishments; places of public worship; plant nurseries; roads; roadside stalls; utility installations; veterinary hospitals.

Subdivision.

PROHIBITED DEVELOPMENT

Any purpose other than those permissible with or without consent.

(e) whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling-house on the land, if so, the minimum land dimensions so fixed,

7(a) Conservation & Scenic Protection (Conservation) under Interim Development Order No.122

Clause 22(1) of Interim Development Order No 122 requires that a dwelling house may only be erected on an allotment of land having an area of not less than 40 hectares.

Clause 22(2) of Interim Development Order No 122 requires where the erection of a dwelling house on an allotment of land having an area of less than 40 hectares that the allotment was;

(a) in existence before 18 February 1977 and was not held in the same ownership as any adjoining allotments at that date or

(b) created after 18 February 1977 otherwise than under 20.

Clause 22(3) to (5) of Interim Development Order No 122 requires where the erection of a dwelling house on an allotment of land having an area of less than 40 hectares and which was one of a number of adjoining allotments held in the same ownership as at the 18 February 1977 is subject to the provisions of Section 29 of the Environmental Planning and Assessment Act 1979.

(f) whether the land includes or comprises critical habitat,

None

(g) whether the land is in a conservation area (however described),

No.

(h) whether an item of environmental heritage (however described) is situated on the land.

No.

2A ZONING AND LAND USE UNDER SEPP (SYDNEY REGIONAL GROWTH CENTRES) 2006

Not applicable

3 COMPLYING DEVELOPMENT

General Housing Code

Complying development under the General Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Rural Housing Code

Complying development under the Rural Housing Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Housing Alterations Code

Complying development under the Housing Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

General Development Code

Complying development under the General Development Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Subdivision Code

Complying development under the Subdivision Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Demolition Code

Complying development under the Demolition Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial (New Buildings and Additions) Code

Complying development under the Commercial and Industrial (New Buildings and Additions) Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Commercial and Industrial Alterations Code

Complying development under the Commercial and Industrial Alterations Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

Fire Safety Code

Complying development under the Fire Safety Code may be carried out on the land under Clauses 1.17A & 1.19. This information needs to be read in conjunction with the whole of the SEPP.

4 COASTAL PROTECTION

The Council has not been notified that by the relevant NSW Government Department that the land is affected by Sections 38 and 39 or Parts 4C, 4D of the Coastal Protection Act, 1979.

Further Council has not been notified that annual charges apply under 4B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works.

4A Information relating to beaches and coasts

(1) whether an order has been made under part 4D of the *Coastal Protection Act* 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

(2) (a) whether the council has been notified under section 55X of the *Coastal Protection Act 1979* that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

(b) if works have been so placed - whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

None.

4B Annual Charges for coastal protection services under *Local Government Act* 1993

None

5 MINE SUBSIDENCE

This land has not been proclaimed to be a mine subsidence district within the meaning of section 15 of The Mine Subsidence Compensation Act, 1961.

6 ROAD WIDENING AND ROAD RE-ALIGNMENT

Whether or not the land is affected by any road widening or road alignment.

The property is adjacent to a State Road under the control of Roads and Maritime Services (RMS) and may be affected by an existing road widening scheme.

Enquiries regarding this matter should in the first instance be directed to the RMS Hunter Regional Office Property Enquiries Officer on 49240240. Project or study specific information enquiries should be directed to the RMS's Central Coast Office on 4379 7001.

7 COUNCIL AND OTHER PUBLIC AUTHORITY POLICIES ON HAZARD RISK RESTRICTIONS (No, unless a message is listed below)

Chapter 6.4 of Gosford Development Control Plan (Geotechnical Requirements) applies to the land and the land may be subject to slip. When considering a development application, each circumstance will be considered and development may be restricted.

7A FLOOD RELATED DEVELOPMENT CONTROLS INFORMATION

Is development on the land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling house or residential flat buildings (excluding group homes or seniors housing) subject to flood related development controls.

No.

Is development on the land or part of the land for any other purpose subject to flood related development controls.

No.

8 LAND RESERVED FOR ACQUISITION

9 CONTRIBUTION PLANS

None.

9A BIODIVERSITY CERTIFIED LAND

Is the land biodiversity certified land (within the meaning of Part 7AA of the *Threatened Species Conservation Act 1995*)?

No.

10 BIOBANKING AGREEMENTS

Is land to which a biobanking agreement under Part 7A of the *Threatened Special Conservation Act 1995* relates.

No.

11 BUSHFIRE PRONE LAND

All or part of the land is shown as bush fire prone on Council's records. Further details of any applicable restrictions on development of the land may be obtained from the Duty Building Surveyor on (02) 4325 8222.

12 PROPERTY VEGETATION PLANS

Has Council been notified by the person or body that approved the plan that the land is land to which a property vegetation plan under the *Native Vegetation Act* 2003 applies?

No.

13 ORDERS UNDER TREES (DISPUTE BETWEEN NEIGHBOURS) ACT 2006

Has Council been notified that an order has been made under the *Trees (Disputes Between Neighbours) Act 2006* to carry out work in relation to a tree on the land?

No.

14 DIRECTIONS UNDER PART 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

15 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR SENIORS HOUSING

15(a) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (SENIORS HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies.

No.

15(b) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CLAUSE 18 (2) OF STATE ENVIRONMENTAL PLANNING POLICY (HOUSING FOR SENIORS OR PEOPLE WITH A DISABILITY) 2004 AFTER 11 OCTOBER 2007?

No.

16 SITE COMPATIBILITY CERTIFICATES FOR INFRASTRUCTURE

No.

17 SITE COMPATIBILITY CERTIFICATES AND CONDITIONS FOR AFFORDABLE RENTAL HOUSING

17(1) IS COUNCIL AWARE OF A CURRENT SITE COMPATIBILITY CERTIFICATE (AFFORDABLE RENTAL HOUSING) IN RESPECT OF PROPOSED DEVELOPMENT ON THE LAND?

No.

17(2) ARE THERE ANY CONDITIONS IMPOSED BY A CONSENT AUTHORITY IN TERMS OF CL 17 (1) OR 37 (1) OF STATE ENVIRONMENTAL PLANNING POLICY (AFFORDABLE RENTAL HOUSING) 2009?

No.

18 PAPER SUBDIVISION INFORMATION

(1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.

None

(2) The date of any subdivision order that applies to the land.

Nil

19 SITE VERIFICATION CERTIFICATE

There is no current site verification certificate, of which the Council is aware in respect of the land.

Note

1 CONTAMINATED LAND MANAGEMENT ACT 1997 NOTICES UNDER SECTION 59(2)

(a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act - if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,

No.

(b) that the land to which the certificate relates is subject to a management order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act - if it is the subject of such an approved proposal at the date when the certificate is issued,

No.

(d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act - if it is subject to such an order at the date when the certificate is issued,

No.

(e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act - if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

No.

2 NATION BUILDING AND JOB PLAN (STATE INFRASTRUCTURE DELIVERY) ACT 2009 EXEMPTION UNDER SECTION 23 OR AUTHORISATION UNDER SECTION 24 OF THE ACT.

The following additional information is issued under Section 149(5) of the Environmental Planning and Assessment Act, 1979

Council has fixed a foreshore building line on all lands fronting any harbour, bay, ocean, lake, estuary, lagoon or tidal river and creek.

If this land adjoins land or roads over which there is an easement for services to drain water, to drain sewage or where services, drainage, sewerage or other utilities have been installed and easements have not been created, foundations may be required such as will ensure the stability of any improvements on the subject land against any influence from use of the easement or installations over the adjoining land or roads.

Landscaping plans are required to accompany applications for each lot developed. The landscaping plan shall comprise predominantly native species indigenous to the local area. The landscaping plan shall be submitted to Council's Development Unit for approval prior to application approval. Where trees and scrubs are to be removed they shall be replaced at a ratio of 2:1.

This land has been identified as containing Estuarine Paperbark Scrub Forest. This community may qualify as the endangered ecological community Swamp Sclerophyll Forest on Coastal Floodplains as listed under Part 3 Schedule 1 of the Threatened Species Conservation Act 1995. The presence of this vegetation community may restrict the development potential of the land. The nature and extent of any threatened species or cultural heritage constraints should be determined following an assessment of the land by a qualified and experienced ecologist/consultant.

A notice has been served to connect the premises to the sewer.

A Tree Preservation Order applies to all trees having a height exceeding 3 metres from the ground and certain other native species (including River Mangrove and Grey Mangrove) irrespective of height.

Land subject to Interim Development Order 122 Clearing (including the underscrubbing) of vacant land is prohibited. The clearing of vacant land (including underscrubbing) is not and cannot be considered as a specific action for which development consent can be given. Clearing (including underscrubbing) is only permitted in association with lawful consent (such as a previous approval by Council or the court). Min.No:71/98

Note: This Certificate is issued without Alteration and Erasure.

TITLE DEED SEARCH

Legal Liaison Searching Services

Level 4, 70 Castlereagh Street, Sydney 2000 PO Box 2513 Sydney NSW 2001 DX 1019 Sydney

Summary of Owners Report

<u>LPI</u>

Sydney

Address: - Bakali Road, Forresters Beach

Description: - Lots 1 2 & 3 D.P 1000694

As regards the part tinted pink on the attached copy of D.P. 1000694

This part was formerly a road, subsequently closed by notification in Government Gazette dated 15.07.1905

The first title to issue was in 1931

Date of Acquisition	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and
and term held	Registered Trophetor(s) & Occupations where available	<u>sale</u>
10.04.1931 (1931 to 1931)	N.S.W. Realty Co Limited	Vol 4475 Fol 124
29.10.1931 (1931 to 1936)	William Harvey (Retired Manufacturer)	Vol 4475 Fol 124 Now Vol 4515 Fol 200
20.05.1936 (1936 to 1941)	William Hedley Harvey (Furniture Warehouseman) (Transmission Application not investigated)	Vol 4515 Fol 200
10.07.1941 (1941 to 1951)	Otto Oscar Groth (Produce Merchant)	Vol 4515 Fol 200
26.06.1951 (1951 to 1959)	Emma May Jorgensen (Married Woman)	Vol 4515 Fol 200
09.12.1959 (1959 to 1972)	Linda Monica Barrie (Widow) James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 4515 Fol 200 Now Vol 8204 Fol 168
14.06.1972 (1972 to 1972)	James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 8204 Fol 168
29.06.1972 (1972 to 1973)	Kevin Arthur Rubie (Company Representative) Margaret Rose Rubie (Married Woman)	Vol 8204 Fol 168
07.06.1973 (1973 to 1992)	K & M Rubie Pty Limited	Vol 8204 Fol 168 Now Auto Consol 8204-168
06.11.1992 (1992 to 1992)	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	Auto Consol 8204-168 Now 1/121549
08.12.1992 (1992 to 1999)	The Park-Forresters Beach Pty Limited	1/121549 Now 3/1000694

Legal Liaison Searching Services

ABN: 52832569710 Ph: 02 9233 5800 Fax: 02 9221 2827

Level 4, 70 Castlereagh Street, Sydney 2000 PO Box 2513 Sydney NSW 2001 DX 1019 Sydney

As regards the part tinted orange on the attached copy of D.P. 1000694

Date of Acquisition	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and
and term held		sale
30.03.1914 (1914 to 1931)	N.S.W. Realty Co Limited	Vol 2010 Fol 248
29.10.1931 (1931 to 1936)	William Harvey (Retired Manufacturer)	Vol 2010 Fol 248 Now Vol 4515 Fol 200
20.05.1936 (1936 to 1941)	William Hedley Harvey (Furniture Warehouseman) (Transmission Application not investigated)	Vol 4515 Fol 200
10.07.1941 (1941 to 1951)	Otto Oscar Groth (Produce Merchant)	Vol 4515 Fol 200
26.06.1951 (1951 to 1959)	Emma May Jorgensen (Married Woman)	Vol 4515 Fol 200
09.12.1959 (1959 to 1972)	Linda Monica Barrie (Widow) James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 4515 Fol 200 Now Vol 8204 Fol 168
14.06.1972 (1972 to 1972)	James Albert Barrie (Motor Mechanic) Mervyn Francis Barrie (Motor Mechanic)	Vol 8204 Fol 168
29.06.1972 (1972 to 1973)	Kevin Arthur Rubie (Company Representative) Margaret Rose Rubie (Married Woman)	Vol 8204 Fol 168
07.06.1973 (1973 to 1992)	K & M Rubie Pty Limited	Vol 8204 Fol 168 Now Auto Consol 8204-168
06.11.1992 (1992 to 1992)	Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas Luigi Cicco Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited	Auto Consol 8204-168 Now 1/121549
08.12.1992 (1992 to 1999)	The Park-Forresters Beach Pty Limited	1/121549 Now 3/1000694

As regards the part tinted yellow on the attached copy of D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
30.12.1913 (1913 to 1920)	N.S.W. Realty Co Limited	Vol 1991 Fol 206
21.12.1920 (1920 to 1943)	William Julian Hosking (Painter) (& His Deceased Estate)	Vol 1991 Fol 206 Now Vol 3148 Fol 215
26.08.1943 (1943 to 1947)	Stanley Robert Dalziell (Turner)	Vol 3148 Fol 215
22.12.1947 (1947 to 1949)	Thomas Kenneth Griffin (Poultry Farmer)	Vol 3148 Fol 215
22.07.1949 (1949 to 1954)	Ethel Mary Mullen (Married Woman)	Vol 3148 Fol 215 Now Vol 6573 Fol 235
25.10.1954 (1954 to 1969)	Albert Gregory (Poultry Farmer)	Vol 6573 Fol 235

ABN: 52832569710 Ph: 02 9233 5800 Fax: 02 9221 2827

Legal Liaison Searching Services

Level 4, 70 Castlereagh Street, Sydney 2000 PO Box 2513 Sydney NSW 2001 DX 1019 Sydney

Reference to Title at Acquisition and Date of Acquisition Registered Proprietor(s) & Occupations where available and term held <u>sale</u> 29.07.1969 Frederick Roy Bononfant (Retired) Vol 6573 Fol 235 (1969 to 1969) Keith Edward Jones (Butcher) 19.12.1969 Vol 6573 Fol 235 Beryl May Jones (Married Woman) (1969 to 1974) 17.10.1974 Romon (No. 10) Pty Limited Vol 6573 Fol 235 (1974 to 1977) Vol 6573 Fol 235 27.06.1977 K & M Rubie Pty Limited Now (1977 to 1992) Vol 13395 <u>Fol 214</u> Robert William Polley Anne Patterson Polley Loui Nicholas Mary Nicholas 06.11.1992 Luigi Cicco Vol 13395 Fol 214 (1992 to 1992) Thomas Hope Murrie Donna Leanne Rush John Lisbona Bellhome Pty Limited Vol 13395 Fol 214 08.12.1992 The Park-Forresters Beach Pty Limited Now (1992 to 1999) 1, 2 & 3/1000694

Search continued as regards the part tinted yellow on the attached copy of D.P. 1000694

Search continued as regards Lot 1 D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
01.06.1999 (1999 to date)	# Melissa Leigh Hall # Damian Bradley James Scott	1/1000694

Denotes current registered proprietors

Easements: -

• 04.05.1999 Restrictions in the use of land (affecting part marked (R) on D.P. 1000694)

• 04.05.1999 Restrictions in the use of land (affecting part marked (S) on D.P. 1000694)

• 04.05.1999 Restrictions in the use of land (D.P. 1000694)

Leases: - NIL

Search continued as regards Lot 2 D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
18.06.1999 (1999 to date)	# Craig John Horton # Trudy Anna Horton	2/1000694

Denotes current registered proprietors

Easements: -

- 04.05.1999 Right of Carriageway 10.5. metres wide and variable D.P. 1000694)
- 04.05.1999 Easement for Services 3, 6 and 10.5 metres wide and variable D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (affecting part marked (R) on D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (affecting part marked (S) on D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (D.P. 1000694)
- 04.05.1999 Easement for Water Supply 3 and 10.5 metres wide and variable D.P. 1000694)

Leases: - NIL

Search continued as regards Lot 3 D.P. 1000694

Date of Acquisition and term held	Registered Proprietor(s) & Occupations where available	Reference to Title at Acquisition and sale
16.06.1999 (1999 to 2002)	John Stephen Barr Kathryn Jane Barr	3/1000694
30.08.2002 (2002 to date)	# Brendon Robert Briggs # Julie Anne Briggs	3/1000694

Denotes current registered proprietors

Easements: -

- 15.12.1983 Easement to Drain Water 6 metres wide (T 732471)
- 04.05.1999 Right of Carriageway 10.5 metres wide and variable D.P. 1000694)
- 04.05.1999 Easement for Services 3, 6 and 10.5 metres wide and variable D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (affecting part marked (R) on D.P. 1000694)
- 04.05.1999 Restrictions in the use of land (D.P. 1000694)

Leases: - NIL

Yours Sincerely Mark Groll 10 November 2015 (Ph: 0412 199 304)

Req:R677397 /Doc:DP 1000694 P /Rev:11-May-1999 /Sts:OK.OK /Prt:09-Nov-2015 15:12 /Pgs:ALL /Seq:1 of 1 Ref:forresters /Src:T

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------9/11/2015 3:14PM

FOLIO: AUTO CONSOL 8204-168

.....

Recorded	Number	Type of Instrument	C.T. Issue
2/6/1992		CONSOL HISTORY RECORD CREATED FOR AUTO CONSOL 8204-168	

PARCELS IN CONSOL ARE: 5/24187, 7-8/24187, 1/121549.

6/11/1992 6/11/1992	E876831	DISCHARGE OF MORTGAGE	
6/11/1992		MORTGAGE	EDITION 1
3/12/1992		1/121549 EXCISED	
8/12/1992 8/12/1992	E924050 E924051	DISCHARGE OF MORTGAGE TRANSFER	EDITION 2
4/1/1993	I19939	DEPARTMENTAL DEALING	EDITION 3
9/9/1994 9/9/1994	U603868 U603869	TRANSFER MORTGAGE	EDITION 4
19/9/1994	U603868	7/24187 EXCISED	
20/9/1994	U634104	DEPARTMENTAL DEALING	EDITION 5
5/10/1994 5/10/1994 5/10/1994	U668770 U668770 U668770	8/24187 EXCISED 5/24187 EXCISED PARCELS EXCISED. CONSOL BROKEN UP	

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Req:R677496 /Doc:DL E876834 /Rev:22-Feb-2007 /Sts:NO.OK /Prt:09-Nov-2015 15:17 /Pgs:ALL /Seq:1 of 23 Ref:forresters /Src:I RP13 only ZANSFE Office of State Reveal 670665 3652 04 5004825X2Y03 (A) LAND TRANSFERRED FOLIO IDENTIFIER AUTO-CONSOL 8204-168 Show no more than 20 References to Title. VOLUME 4490 FOLIO 138, VOLUME 13395 FOLIO 214 -If appropriate, specify the share transferred. FOLIO IDENTIFIER 2/706892, FOLIO IDENTIFIER 62/747931 FOLIO IDENTIFIER 4/8857, FOLIO IDENTIFIER 3/45580. Name, Address or DX and Telephone NATIONAL AUSTRALIA BANK LIMITED **(B)** LODGED BY L.T.O. Box National Australia Bank Limited 255 George Street, Sydney FAX 237-1284 237 - 1111 REFER TRANSFERORK. & M. RUBIE PTY LIMITED (ACN 000.870.155)..... (C) (D) acknowledges receipt of the consideration of $\frac{$2,600,000.00}{...}$ and as regards the land specified above transfers to the transferee an estate in fee simple 1 WI72226 subject to the following ENCUMBRANCES 2. (E) TRANSFEREE **(F)** SEE ANNEXURE A as joint tenants/tenants in common (G) (H) We certify this dealing correct for the purposes of the Real Property Act, 1900. DATE Signed in my presence by the transferor who is personally known to me. ignature of Witness Duly executed by the Vendor K & MM Rubie Pty Limited by its duly authorised NOIL R. CUSSEN Signature of Witness Name of Witness (BLOCK) Attorney Kevin R Shirlaw pursuant to MARKET ST, STONE Name of Witness (BLOCK LETTERS) Address of Witness Power of Attorney Book 3873 No 637. Signature of Transferor Address of Witness Signed in my presence by the transferee who is personally known to me. Signature of Witness Name of Witness (BLOCK LETTERS) Address of Witness SOLICITOR FOR Signaturoof Transferee WAKIM) (PAUL V. AILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only) INSTRUCTIONS FOR FILLING OUT THIS F JA 18

Req:R677496 /Doc:DL E876834 /Rev:22-Feb-2007 /Sts:NO.OK /Prt:09-Nov-2015 15:17 /Pgs:ALL /Seq:2 of 2 Ref:forresters /Src:T

8

THIS IS THE ANNEXURE "A" TO THE TRANSFER BY K. & M. RUBIE PTY. LIMITED AS TRANSFEROR OF THE LAND COMPRISED IN THE FOLLOWING TITLES.

- 1. FOLIO IDENTIFIER AUTO-CONSOL 8204-168
- 2. VOLUME 4490 FOLIO 138,
- 3. FOLIO IDENTIFIER 2/706892
- 4. FOLIO IDENTIFIER 4/8857
- 5. VOLUME 13395 FOLIO 214
- 6. FOLIO IDENTIFIER 62/747931
- 7. FOLIO IDENTIFIER 3/45580

TRANSFEREE

4490-138

6.

ROBERT WILLIAM FOLLEY and ANNE PATTERSON POLLEY both of 4 Whitfield Avenue, Ashfield as joint tenants as to an undivided one-fifth share, as tenant in common with

LOUI NICHOLAS and MARY NICHOLAS both of 16 χ Florida Avenue, Ermington, as joint tenants as to an undivided one-fifth share, as tenant in common with

LUIGI CICCO of 1/8 Eastbourne Road, Homebush, as to an undivided one-tenth share, as tenant in common with

THOMAS HOPE MURRIE of 37A Copeland Road, Beecroft, as to an undivided one-tenth share, |// as tenant in common with

✗ DONNA LEANNE RUSH, of 37A Copeland Road, Beecroft, as to an undivided one-tenth share, /// as tenant in common with

JOHN LISBONA, of 49 Broome Street, Maroubra, 1/100 as to an undivided one-tenth share, as tenant 1/1000 in common with

BELLHOME PTY LIMITED (ACN 056 418 252) C/-Murrie & Co, Accountants, 2 O'Connell Street, Parramatta, as to an undivided two-tenths share.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 9/11/2015 3:10PM

FOLIO: 1/121549

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 8204 FOL 168

Recorded 28/5/1992	Number DP121549	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
2/6/1992		CONVERTED TO AUTO CONSOL 8204-168	CONSOL CREATED CT NOT ISSUED
3/12/1992		EXCISED FROM AUTO CONSOL 8204-168	
8/12/1992 8/12/1992	E924050 E924052	DISCHARGE OF MORTGAGE	EDITION 2
4/1/1993	I19939	DEPARTMENTAL DEALING	EDITION 3
5/5/1994	DP838562	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Req:R6 Ref:fc	77399 /Doc:DL E924052 /Rev:17-May prresters /Src:T	-2010 /Sts:OK.SC /Prt:09-Nov-2015 15:12 /Pgs:ALL /Seq:1 of 3					
4	RP13	CTRANSFER Red Property Act, 1990					
		Concert Concerts Conc					
	1.34 8						
(A)	LAND TRANSFERRED Show no more than 20 References to Title. If appropriate, specify the share transferred.	being Lot 1 in Deposited Plan 121549 Part Volume 8204 Folio 168/ and the whole of Volume 13395 Folio 214					
(8)	LODGED BY	L.T.O. Box 249H Dibbs Crowther and Osborne DX 101 Sydney Tel: 290 8220 REFERENCE (max. 15 characters): DJS					
(C)	TRANSFEROR	ROBERT WILLIAM POLLEY, ANNE PATTERSON POLLEY, LOUI NICHOLAS, MARY NICHOLAS, LUIGI CICCO, THOMAS HOPE MURRIE, DONNA LEANNE RUSH, JOHN LISBONA AND BELLHOME PTY.LIMITED ACN 056.418.252					
(D)	acknowledges receipt of the consideration	n of . \$440,000.00					
e (E)	and as regards the land specified above t subject to the following ENCUMBRANC	ransfers to the transferee an estate in fee simple ES 1. 3.					
	TRANSFEREE						
(F)	THE PAL						
(G)		as joint tenants/tenants in common OVER					
н	 (H) We certify this dealing correct for the purposes of the Real Property Act, 1900. DATE OF EXECUTION 1875. November 1992. Signed in my presence by the transferor who is personally known to me. 						
	Signature of Witness						
	Name of Witness (BLOCK LET	ERS) SEE ANNEXURE "A" HERETO					
	Address of Witness	Signature of Transferor					
	Signed in my presence by the transferee	who is personally known to me.					
	3						
Å	Signature of Witness						
P.r'	Name of Witness (BLOCK LET	TERS)					
	Address of Witness	Signature of Transferee's Solicitor . DAVID JAMES SHARPE					
¶927¢ ∎sir	INSTRUCTIONS FOR FILLING OUT THIS FORM	ARE AVAILABLE FROM THE LAND TITLES OFFICE CHECKED BY (office use only)					
Aut	doc Commercial and Law Stationers 1991						

Reg:R677399 /Doc:DL E924052 /Rev:17-May-2010 /Sts:OK.SC /Prt:09-Nov-2015 15:12 /Pgs:ALL /Seg:2 of 3 Ref:forresters /Src:T

BY POLLEY, NICHOLAS, "A" TO THE TRANSFER THIS IS THE ANNEXURE CICCO, MURRIE, RUSH, LISBONA & BELLHOME PTY LTD AS TRANSFERORS AND THE PARK-FORRESTERS BEACH PTY LIMITED AS TRANSFEREES.

ROBERT WILLIAM POLLEY

ANNE PATTERSON POLLEY

LOUI NICHOLAS

M Dicholan MARY NICHOLAS

ALL VINCHAT NAME OF WITNESS

42 A MACULA ST ADDRESS OF WITNESS

SIGNATURE OF WITNESS

CO LUIGI CICCO

THOMAS HOPE MURRIE

rina DONNA LEANNE RUSH

Jah JOHN LISBONA

THE COMMON SEAL OF BELLHOME PTY LIMITED (ACN 056 418 252) was hereunto affixed by Order of the Board in the presence of

MITED Commun Seal DIRECTOR

SECRETARY

A ·			OFFIC	E USE ONLY E 924052
	2	REG	ISTRATION D	IRECTION ANNEXURE
				and Second Schedule directions
14 M			<u>DO NOT USE BO</u>	TH SIDES OF THE FORM
		2i	FIRST SCHEI	DULE DIRECTIONS
FOLIO IDENTIFIER	(B)	DIRECTION	(C)	NAME
1/12/549		S	THE PAR	K-FORRESTERS BEACH PTY LIMITEL
13395-21	4)	100 a		
		<		
	1.111			
				iteren en en en en en en en en en en en en e
		<u>.</u>		AND OTHER DIRECTIONS
FOLIOIDENTIFIER	(E) DIRECTION	(F) NOTEN	IG) IR DEALING I NUMBER	
1/121549	OFF	EA	F688378	and a second second second second second second second second second second second second second second second
1/1=10+1		-1		
			<u> </u>	
		-	l t	
			L	
and and a second				
			i i	
			· · · · · · · · · · · · · · · · · · ·	
	-			
		<u> !</u>	l	
				and a second second second second second second second second second second second second second second second
2 -				(4) ¹⁸ (4) ¹⁸ (4) (4)
			İ	
			1	· · · · · · · · · · · · · · · · · · ·
		L i		2
a sector in the		<u> </u>		
	-			Charles the College of Statistics of the Statistics
				1

185C1044		All 1 3 8 B 1 T 5 HIN 19 8 B 1 T 5 HIS OL 2 5 HIS O	199 404 2 -	3ś		E92405211	T		
	Registror General					(growing)	0.3		
					CANCELLATION	\$170564	25697812	E 876831	
	DATE Prich	134) 3 2.				Discharged	Directored		
INSTRUMENT	ACT PLEP	Hell hours			Signature of Registrar General			6	
	ATURE Land	the and			ENTERED	a	-1481-5-	066	
FIRST SCHEDULE (continued)	and thomas Partleteen Partland as print tener to in your also	Comme Part in 10 alare / the Subore in 10 allows in 10 allows in 10 allows in 10 allows in 10 allows in 100 allows		SECOND SCHEDULE (continued)	DATE PARTICULARS	mption The land so molicated in	a Internation printing builter out the same	NATIONAL AUSIMALIA PANK LIMITED.	DPIST 33552 Englatered 4 - 5 - 1994 This folio is concelled as to what for the of computer folios for loss for j 62 in the abovementioned plan. in the endlowed plan.
	ologh til Latin Polly .	1. Plant Jones L. Land L. Part Land Land Land Land Land Land Land Land			INSTRUMENT NATURE NUMBER	-9060 fa	CONCRRS Women to 10+5 K	895108 MODTONGE T	

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 61/838562		
First Title(s): Prior Title(s):	VOL 1273 FOL 205 VOL 4475 FOL 1/121549 VOL 13395 FOI	
Recorded Number	Type of Instrument	C.T. Issue
5/5/1994 DP838562	DEPOSITED PLAN	FOLIO CREATED EDITION 1
21/7/1997 3253310	MORTGAGE	EDITION 2
4/5/1999 DP1000694	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 1/10	00694		
	t Title(s): r Title(s):	VOL 1273 FOL 205 61/838562	
Recorded	Number	Type of Instrument	C.T. Issue
4/5/1999	DP1000694	DEPOSITED PLAN	FOLIO CREATED EDITION 1
1/6/1999	5869181	DISCHARGE OF MORTGAGE	
1/6/1999	5869182	TRANSFER	EDITION 2
25/2/2000	6597085	MORTGAGE	EDITION 3

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act. Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

	SEARCH DATE	TIME	EDITION NO	
	9/11/2015	3:06 PM		25/2/2000
LAND				
AT FO LOCAL PARIS	DEPOSITED PLAN 1 RRESTERS BEACH GOVERNMENT AREA H OF KINCUMBER DIAGRAM DP100069	GOSFORD COUNTY OF NORTHU	MBERLAND	
FIRST SC				
	LEIGH HALL			
	RADLEY JAMES SCOT ENANTS IN COMMON			(T 586918
	CHEDULE (7 NOTIFI	CATIONS)		
1 RESE	RVATIONS AND COND	TTTONS IN THE CO	OWN CDANT (C)	
	456 COVENANT		COMIN GIGARIT (5)	
	00694 EASEMENT FO		0.5 METRES WIDE A LAND ABOVE DESCR	
4 DP10		(S) ON THE USE O NATED (R) IN THE	F LAND AFFECTING	THE PART
	00694 RESTRICTION		F LAND AFFECTING	THE PART
5 DP10				
	00694 RESTRICTION	(S) ON THE USE O	LAND	
6 DP10			EW ZEALAND BANKIN	G GROUP
6 DP10	085 MORTGAGE TO LIMITED S			G GROUP

forresters

PRINTED ON 9/11/2015

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: 2/1000694

First Title(s): VOL 1273 FOL 205 Prior Title(s): 61/838562

Recorded	Number	Type of Instrument	C.T. Issue
4/5/1999	DP1000694	DEPOSITED PLAN	FOLIO CREATED EDITION 1
18/6/1999 18/6/1999	5912286 5912287	DISCHARGE OF MORTGAGE	
18/6/1999	5912288	MORTGAGE	EDITION 2
19/5/2010 19/5/2010	AF499392 AF499393	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 3

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

		ARCH DATE	TIME	EDITION NO	
		11/2015	3:06 PM	3	
LAI					
	F 2 IN DEPO AT FORREST LOCAL GOVE PARISH OF	RNMENT AREA	GOSFORD COUNTY OF NORTHU	JMBERLAND	
	RST SCHEDUL				
	AIG JOHN HO				
TRU	JDY ANNA HO AS JOINT				(T 5912287)
					(1 5512207
	COND SCHEDU	LE (12 NOTIF	ICATIONS)		
			ITIONS IN THE CF	OWN GRANT (S)	
	A654456		RETACEWAY 10 5 M	IETRES WIDE AND VA	RTARLE
<u>́</u>	DITOCOUPI			SO BURDENED IN 7	
4	DD1000694	DIAGRAM	DTACEWAY 10 5 M	IETRES WIDE AND VA	DIADIE
	DI 10000034		MIAGEWAI IU.J P.	ILINES WIDE AND VE	INTADDE
		APPURTENANT	TO THE LAND ABC	VE DESCRIBED	
5	DP1000694	RIGHT OF FOO	OTWAY 3 METRES W	IDE AND VARIABLE	
-		RIGHT OF FOO APPURTENANT	DTWAY 3 METRES W TO THE LAND ABC	IDE AND VARIABLE	ND
-		RIGHT OF FOO APPURTENANT EASEMENT FOF VARIABLE AFE	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART	VIDE AND VARIABLE	
6	DP1000694	RIGHT OF FOU APPURTENANT EASEMENT FOF VARIABLE AFT THE TITLE DI	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM	VIDE AND VARIABLE DVE DESCRIBED 0.5 METRES WIDE A	DENED IN
6	DP1000694 DP1000694	RIGHT OF FOU APPURTENANT EASEMENT FOR VARIABLE AFF THE TITLE DI EASEMENT FOR VARIABLE APP	DTWAY 3 METRES W TO THE LAND ABC SERVICES 3,6,1 FECTING THE PART IAGRAM R SERVICES 3,6,1 PURTENANT TO THE	IDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURI 0.5 METRES WIDE A LAND ABOVE DESCR	ND RIBED
6	DP1000694 DP1000694	RIGHT OF FOU APPURTENANT EASEMENT FOF VARIABLE AFF THE TITLE DI EASEMENT FOF VARIABLE APP RESTRICTION	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C	IDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE F (S) SHOWN SO BURI 0.5 METRES WIDE F LAND ABOVE DESCR F LAND AFFECTING	ND RIBED
5 6 7 8 9	DP1000694 DP1000694 DP1000694	RIGHT OF FOU APPURTENANT EASEMENT FOR VARIABLE AFH THE TITLE DI EASEMENT FOR VARIABLE APH RESTRICTION RESTRICTION	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C NATED (R) IN THE (S) ON THE USE C	VIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE F (S) SHOWN SO BURN 0.5 METRES WIDE F LAND ABOVE DESCR F LAND AFFECTING TILE DIAGRAM F LAND AFFECTING	ENED IN ND RIBED THE PART
6 7 8 9	DP1000694 DP1000694 DP1000694 DP1000694	RIGHT OF FOO APPURTENANT EASEMENT FOF VARIABLE AFF THE TITLE DI EASEMENT FOF VARIABLE APF RESTRICTION SHOWN DESIGN RESTRICTION DESIGNATED	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C NATED (R) IN THE (S) ON THE USE C (S) IN THE TITLE	DIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURN 0.5 METRES WIDE A LAND ABOVE DESCR F LAND AFFECTING TILE DIAGRAM F LAND AFFECTING DIAGRAM	ENED IN ND RIBED THE PART
6 7 8 9	DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	RIGHT OF FOO APPURTENANT EASEMENT FOO VARIABLE AFT THE TITLE DI EASEMENT FOO VARIABLE APP RESTRICTION SHOWN DESIGN RESTRICTION RESTRICTION	TWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C (S) ON THE USE C (S) IN THE TITLE (S) ON THE USE C	DIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURN 0.5 METRES WIDE A LAND ABOVE DESCR F LAND AFFECTING TILE DIAGRAM F LAND AFFECTING DIAGRAM	ENED IN ND THE PART THE PART
6 7 8 9	DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	RIGHT OF FOO APPURTENANT EASEMENT FOO VARIABLE AFT THE TITLE DI EASEMENT FOO VARIABLE APP RESTRICTION BESTRICTION DESIGNATED RESTRICTION EASEMENT FOO VARIABLE AFT	TWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C (S) ON THE USE C (S) IN THE TITLE (S) ON THE USE C (S) ON THE USE C R WATER SUPPLY 3 FECTING THE PART	DIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURN 0.5 METRES WIDE A LAND ABOVE DESCR F LAND AFFECTING F LAND AFFECTING DIAGRAM F LAND	DENED IN AND RIBED THE PART THE PART
6 7 8 9 10 11	DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	RIGHT OF FOO APPURTENANT EASEMENT FOO VARIABLE AFT THE TITLE DI EASEMENT FOO VARIABLE APP RESTRICTION BESTRICTION DESIGNATED RESTRICTION EASEMENT FOO VARIABLE AFT THE TITLE DI	TWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C (S) ON THE USE C (S) IN THE TITLE (S) ON THE USE C (S) ON THE USE C R WATER SUPPLY 3 FECTING THE PART	DIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURN 0.5 METRES WIDE A LAND ABOVE DESCR F LAND AFFECTING F LAND AFFECTING DIAGRAM F LAND ,10.5 METRES WIDE (S) SHOWN SO BURN	DENED IN AND RIBED THE PART THE PART
6 7 8 9 10 11	DP1000694 DP1000694 DP1000694 DP1000694 DP1000694 DP1000694 AF499393	RIGHT OF FOO APPURTENANT EASEMENT FOO VARIABLE AFT THE TITLE DI EASEMENT FOO VARIABLE APP RESTRICTION SHOWN DESIGN RESTRICTION DESIGNATED RESTRICTION EASEMENT FOO VARIABLE AFT THE TITLE DI	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C (S) ON THE USE C (S) ON THE USE C (S) IN THE TITLE (S) ON THE USE C R WATER SUPPLY 3 FECTING THE PART LAGRAM	DIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURN 0.5 METRES WIDE A LAND ABOVE DESCR F LAND AFFECTING F LAND AFFECTING DIAGRAM F LAND ,10.5 METRES WIDE (S) SHOWN SO BURN	DENED IN AND RIBED THE PART THE PART
6 7 8 9 10 11 12 NOT	DP1000694 DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	RIGHT OF FOO APPURTENANT EASEMENT FOO VARIABLE AFT THE TITLE DI EASEMENT FOO VARIABLE APP RESTRICTION SHOWN DESIGN RESTRICTION DESIGNATED RESTRICTION EASEMENT FOO VARIABLE AFT THE TITLE DI	DTWAY 3 METRES W TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PART LAGRAM R SERVICES 3,6,1 PURTENANT TO THE (S) ON THE USE C (S) ON THE USE C (S) ON THE USE C (S) IN THE TITLE (S) ON THE USE C R WATER SUPPLY 3 FECTING THE PART LAGRAM	DIDE AND VARIABLE VE DESCRIBED 0.5 METRES WIDE A (S) SHOWN SO BURN 0.5 METRES WIDE A LAND ABOVE DESCR F LAND AFFECTING F LAND AFFECTING DIAGRAM F LAND ,10.5 METRES WIDE (S) SHOWN SO BURN	DENED IN AND RIBED THE PART THE PART

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----9/11/2015 3:08PM

FOLIO: 3/1000694

First Title(s): VOL 1273 FOL 205 VOL 4475 FOL 124 Prior Title(s): 61/838562

Recorded	Number	Type of Instrument	C.T. Issue
4/5/1999	DP1000694	DEPOSITED PLAN	FOLIO CREATED EDITION 1
16/6/1999 16/6/1999	5907218 5907219	DISCHARGE OF MORTGAGE	EDITION 2
8/9/1999	6171417	MORTGAGE	EDITION 3
30/8/2002 30/8/2002 30/8/2002 30/8/2002	8911295 8911296 8911297 8911298	DISCHARGE OF MORTGAGE TRANSFER MORTGAGE MORTGAGE	EDITION 4

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

f:forres k	00 /Doc:DL 5907 sters /Src:T IT	219 /Rev:19-Jun-19 Licence Number 010CN/0214/95	TR	/Prt:09-Nov-2015 15:12 / ANSFER Property Act, 1900	Pgs:ALL /Seq:1 of 1 5907219L
		()	Office of Sta	
		\$5,00		0+ 800221856/03	
(A)	LAND TRANS Show no more than 2 If appropriate, spacify	O References to Title.	61/838562(PA NOW BEING	ART) FOLIO IDENTIFIER 3/10	000694
(B)	LODGED BY		L.T.O Box 147R	Aubrey Brown Partners DX 7305 Wyong (02) 4332 8077	
				Reference : 3779:80 84	DI: BUYY
(C)	TRANSFERO	3	THE PARK FO	ORRESTERS BEACH PTY	LIMITED ACN 056 986-282
(D)				\$260,000.00 ers to the Transferee an	estate in fee simple.
(E)	subject to the	e following ENCUN	IBRANCES 1.		
(F) (G)	TRANSFEREE	T	JOHN STEPHE Tenancy: Joint T	N BARR AND KATHRYN	N JANE BARR
(H)	We certify th	is dealing correct	for the purposes	s of the Real Property A	ct, 1900 21/5/ 1999
•	0.56 9.86 in the Name	282 Was Signature of Witness of Vitness (BLOCK LE Address of Witness pignature of	Loveto aff fregsi director/secr	obary	Signature of Transferor director
	Signed in my	presence by the T	ransferee who	is personally known to n	ne.
		Signature of Witness			
		of Witness (BLOCK LE		•••••	Ample
		Address of Witness			Solicitor for Transferee - Gordon William Popple
	2		2	2°	CHECKED BY (office use only)

12

Legal Liaison Services hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act.

Information provided through Tri-Search an approved LPINSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

		ARCH DATE		EDITION NO	
		11/2015	3:06 PM	4	30/8/2002
LAI	ND				
LO	AT FORREST LOCAL GOVE PARISH OF	RNMENT AREA	GOSFORD COUNTY OF NORTH	UMBERLAND	
	RST SCHEDUL				
BRI	ENDON ROBER LIE ANNE BR AS JOINT	T BRIGGS IGGS			(Т 8911296
	COND SCHEDU	LE (13 NOTIF	ICATIONS)		
	RESERVATIO		TUTONO IN UUE CI		
		COVENANT AF	FECTING THE PART	r Shown So Burden	IED IN
	C101804 A654456	COVENANT AF THE TITLE D COVENANT AF	FECTING THE PARTING		
2	C101804 A654456	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO	FECTING THE PAR' IAGRAM. FECTING THE PAR' IAGRAM DRAIN WATER 6 1	F SHOWN SO BURDEN F SHOWN SO BURDEN METRES WIDE AFFE(NED IN
2 3	C101804 A654456 T732471	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 M SO BURDENED IN T RRIAGEWAY 10.5 M	F SHOWN SO BURDEN	NED IN CTING THE 1 VARIABLE
2 3 4	C101804 A654456 T732471 DP1000694	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T. DIAGRAM RIGHT OF CA	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 N SO BURDENED IN S RRIAGEWAY 10.5 N HE PART(S) SHOWN RRIAGEWAY 10.5 N	F SHOWN SO BURDEN F SHOWN SO BURDEN 4ETRES WIDE AFFEC FHE TITLE DIAGRAN 4ETRES WIDE AND X N SO BURDENED IN 4ETRES WIDE AND X	NED IN CTING THE 1 VARIABLE THE TITLE
2 3 4 5 6	C101804 A654456 T732471 DP1000694 DP1000694	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 M SO BURDENED IN T RRIAGEWAY 10.5 M HE PART(S) SHOWN RRIAGEWAY 10.5 M TO THE LAND ABC R SERVICES 3,6,1	F SHOWN SO BURDEN F SHOWN SO BURDEN 4ETRES WIDE AFFEC FHE TITLE DIAGRAN 4ETRES WIDE AND X N SO BURDENED IN 4ETRES WIDE AND X	NED IN CTING THE 1 VARIABLE THE TITLE VARIABLE AND
2 3 4 5 6	C101804 A654456 T732471 DP1000694 DP1000694 DP1000694	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 M SO BURDENED IN T RRIAGEWAY 10.5 M HE PART(S) SHOWN RRIAGEWAY 10.5 M TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PAR IAGRAM R SERVICES 3,6,1	F SHOWN SO BURDEN F SHOWN SO BURDEN 4ETRES WIDE AFFEC THE TITLE DIAGRAN 4ETRES WIDE AND V N SO BURDENED IN 4ETRES WIDE AND V OVE DESCRIBED 10.5 METRES WIDE 5 (S) SHOWN SO BUR 10.5 METRES WIDE	NED IN CTING THE A VARIABLE THE TITLE VARIABLE AND RDENED IN AND
2 3 4 5 6 7	C101804 A654456 T732471 DP1000694 DP1000694 DP1000694	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 M SO BURDENED IN T RRIAGEWAY 10.5 M HE PART(S) SHOWN RRIAGEWAY 10.5 M TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PAR IAGRAM R SERVICES 3,6,1 PURTENANT TO THH (S) ON THE USE (F SHOWN SO BURDEN F SHOWN SO BURDEN AETRES WIDE AFFEC THE TITLE DIAGRAM AETRES WIDE AND V N SO BURDENED IN AETRES WIDE AND V OVE DESCRIBED LO.5 METRES WIDE S SHOWN SO BUR LO.5 METRES WIDE E LAND ABOVE DESC OF LAND AFFECTING	NED IN CTING THE A VARIABLE THE TITLE VARIABLE AND RDENED IN RAND R IBED
2 3 4 5 6 7 8	C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA APPURTENANT EASEMENT FO VARIABLE AF THE TITLE D EASEMENT FO VARIABLE AP RESTRICTION SHOWN DESIGN	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 M SO BURDENED IN T RRIAGEWAY 10.5 M HE PART(S) SHOWN RRIAGEWAY 10.5 M TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PAR IAGRAM R SERVICES 3,6,1 PURTENANT TO THM (S) ON THE USE (NATED (R) IN THM (S) ON THE USE (F SHOWN SO BURDEN F SHOWN SO BURDEN 4ETRES WIDE AFFEC THE TITLE DIAGRAM 4ETRES WIDE AND V N SO BURDENED IN 4ETRES WIDE AND V OVE DESCRIBED 10.5 METRES WIDE F LAND ABOVE DESC DF LAND AFFECTING F LAND AFFECTING	NED IN CTING THE A VARIABLE THE TITLE VARIABLE AND RDENED IN RDENED IN CRIBED CRIBED
2 3 4 5 6 7 8 9	C101804 A654456 T732471 DP1000694 DP1000694 DP1000694 DP1000694 DP1000694	COVENANT AF THE TITLE D COVENANT AF THE TITLE D EASEMENT TO PART SHOWN RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA AFFECTING T DIAGRAM RIGHT OF CA AFFECTING T CARIABLE AF THE TITLE D EASEMENT FO VARIABLE AF RESTRICTION SHOWN DESIGN RESTRICTION DESIGNATED RESTRICTION	FECTING THE PAR IAGRAM. FECTING THE PAR IAGRAM DRAIN WATER 6 M SO BURDENED IN T RRIAGEWAY 10.5 M HE PART(S) SHOWN RRIAGEWAY 10.5 M TO THE LAND ABC R SERVICES 3,6,1 FECTING THE PAR IAGRAM R SERVICES 3,6,1 PURTENANT TO THM (S) ON THE USE ((S) IN THE TITLM (S) ON THE USE (S) ON THE USE (F SHOWN SO BURDEN F SHOWN SO BURDEN AETRES WIDE AFFEC THE TITLE DIAGRAM AETRES WIDE AND V N SO BURDENED IN AETRES WIDE AND V OVE DESCRIBED LO.5 METRES WIDE F LAND ABOVE DESC DF LAND AFFECTING TILE DIAGRAM DF LAND AFFECTING DIAGRAM	NED IN TING THE A VARIABLE THE TITLE VARIABLE AND ROENED IN ROENED IN RIBED ; THE PART

END OF PAGE 1 - CONTINUED OVER

forresters

PRINTED ON 9/11/2015

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 3/1000694

PAGE 2

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO. UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

forresters

PRINTED ON 9/11/2015

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 4/1000694

SEARCH DATE	TIME	EDITION NO	DATE
27/10/2014	12:07 PM	5	24/10/2014

LAND

LOT 4 IN DEPOSITED PLAN 1000694 AT FORRESTERS BEACH LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1000694

FIRST SCHEDULE

VERSATILE LIVING PTY LIMITED

(T AI980929)

SECOND SCHEDULE (10 NOTIFICATIONS)

SECOND SCHEDULE (10 NOTIFICATIONS)							
1	1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)						
2		COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.					
3	A654456	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM					
4	т732471	EASEMENT TO DRAIN WATER 6 METRES WIDE AFFECTING THE					
5	DP1000694	PART SHOWN SO BURDENED IN THE TITLE DIAGRAM RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM					
6	DP1000694	RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED					
7	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM					
8	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED					
9	DP1000694	RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART					
10	DP1000694	DESIGNATED (S) IN THE TITLE DIAGRAM RESTRICTION(S) ON THE USE OF LAND					
NOTATIONS							
UNR	EGISTERED	DEALINGS: NIL					

*** END OF SEARCH ***

PRINTED ON 27/10/2014

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

© State of New South Wales through Land and Property Information (2014)

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 51/1028301

SEARCH DATE	TIME	EDITION NO	DATE
30/10/2014	3:53 PM	6	15/11/2012

LAND

LOT 51 IN DEPOSITED PLAN 1028301 AT FORRESTERS BEACH LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1028301

FIRST SCHEDULE

TERRIGAL GROSVENOR LODGE PTY LIMITED

(T AD272087)

SECOND SCHEDULE (12 NOTIFICATIONS)

1		ONS AND CONDITIONS IN THE CROWN GRANT(S)
2	A654456	COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
3	DP1000694	RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE
4	DP1000694	APPURTENANT TO THE LAND ABOVE DESCRIBED RIGHT OF FOOTWAY 3 METRES WIDE AND VARIABLE AFFECTING
_		THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
5	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN
		THE TITLE DIAGRAM
б	DP1000694	EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND
		VARIABLE APPURTENANT TO THE LAND ABOVE DESCRIBED
7		RESTRICTION(S) ON THE USE OF LAND
•		72 VARIATION OF RESTRICTION DP1000694
8	DP1000694	EASEMENT FOR WATER SUPPLY 3,10.5 METRES WIDE AND
		VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN
		THE TITLE DIAGRAM
9	DP1028301	EASEMENT TO DRAIN SEWAGE OVER EXISTING LINE OF PIPES APPURTENANT TO THE LAND ABOVE DESCRIBED
10	1029201	EASEMENT FOR SERVICES 3 METRE(S) WIDE AND VARIABLE
ΤŪ	DPI020301	AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE
		DIAGRAM
11	1029201	RIGHT OF FOOTWAY 3 METRE(S) WIDE AND VARIABLE
<u>тт</u>	DPI020301	AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE
		DIAGRAM
12	AH369317	MORTGAGE TO SECURE FUNDING PTY LTD

END OF PAGE 1 - CONTINUED OVER

PRINTED ON 30/10/2014

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH _____

FOLIO: 51/1028301 ____

PAGE 2

NOTATIONS _____

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 30/10/2014

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. © State of New South Wales through Land and Property Information (2014)

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.

1965075

LegalStream Australia Pty Ltd

ABN: 80 002 801 498

Level 15, 115 Pitt Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au An Approved LPI NSW Information

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 522/1077907

SEARCH DATE	TIME	EDITION NO	DATE
3/5/2013	9:52 AM	3	23/5/2011

LAND

LOT 522 IN DEPOSITED PLAN 1077907 AT FORRESTERS BEACH LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP1077907

FIRST SCHEDULE

TERRIGAL GROSVENOR LODGE PTY LIMITED

(T AG146253)

SECOND SCHEDULE (17 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2	C20279	COVENANT	AFFECTING	THE	PART	SHOWN	SO	BURDENED	IN
		THE TITL	E DIAGRAM.						

- 3 C101804 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 4 AA842085 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 5 A654456 COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM.
- 6 T732471 EASEMENT TO DRAIN WATER 6 METRES WIDE AFFECTING THE PART SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 7 DP1000694 RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 8 DP1000694 RIGHT OF CARRIAGEWAY 10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 9 DP1000694 RIGHT OF FOOTWAY 3 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 10 DP1000694 EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 11 DP1000694 EASEMENT FOR SERVICES 3,6,10.5 METRES WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 12 DP1000694 RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART DESIGNATED (S) IN THE TITLE DIAGRAM 7870972 VARIATION OF RESTRICTION DP1000694
- 13 DP1000694 RESTRICTION(S) ON THE USE OF LAND AFFECTING THE PART

END OF PAGE 1 - CONTINUED OVER

7358

PRINTED ON 3/5/2013

LegalStream Australia Pty Ltd

ABN: 80 002 801 498

Level 15, 115 Pitt Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY Tel: (02) 9231 0122 Fax: (02) 9233 6411 www.legalstream.com.au

An Approved LPI NSW Information

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 522/1077907

PAGE 2

SECOND SCHEDULE (17 NOTIFICATIONS) (CONTINUED)

SHOWN SO BURDENED IN THE TITLE DIAGRAM

- 14 DP1000694 EASEMENT FOR WATER SUPPLY 3,10.5 METRES WIDE AND VARIABLE AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 15 DP1028301 EASEMENT TO DRAIN SEWAGE OVER EXISTING LINE OF PIPES AFFECTING THE PART(S) SHOWN SO BURDENED IN THE TITLE DIAGRAM
- 16 DP1028301 EASEMENT FOR SERVICES 3 METRE(S) WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM
- 17 DP1028301 RIGHT OF FOOTWAY 3 METRE(S) WIDE AND VARIABLE APPURTENANT TO THE PART SHOWN SO BENEFITED IN THE TITLE DIAGRAM

NOTATIONS

UNREGISTERED DEALINGS: T AH702607.

*** END OF SEARCH ***

PRINTED ON 3/5/2013

7358

LegalStream Australia Pty Ltd

 ABN: 80 002 801 498
 An Approved

 Level 15, 115 Pitt Street, SYDNEY NSW 2000, AUSTRALIA * DX654, SYDNEY
 LPI NSW

 Tel: (02) 9231 0122
 Fax: (02) 9233 6411
 www.legalstream.com.au
 Information

Search Date: 03-May-2013 Cost Summary

Our Ref#	Search Type	Search Reference	Client Ref#		Total Cost I	'otal GST
2778667	Title Search	522/1077907	7358		10.14	0.93
			REPORT	TOTAL:	10.14	0.93

* * * END OF REPORT * * *

Order number: 24810486 Your Reference: DCB:TC:8704(Klumper - 959) 30/10/14 15:56

.

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 18/23283

SEARCH DATE	TIME	EDITION NO	DATE
	- -		
30/10/2014	3:56 PM	6	15/11/2012

LAND

LOT 18 IN DEPOSITED PLAN 23283 LOCAL GOVERNMENT AREA GOSFORD PARISH OF KINCUMBER COUNTY OF NORTHUMBERLAND TITLE DIAGRAM DP23283

FIRST SCHEDULE

TERRIGAL GROSVENOR LODGE PTY LIMITED

(T AD272087)

SECOND SCHEDULE (3 NOTIFICATIONS)

1 LAND EXCLUDES MINERALS AND IS SUBJECT TO RESERVATIONS AND CONDITIONS IN FAVOUR OF THE CROWN - SEE CROWN GRANT(S)

2 A654456 COVENANT

3 AH369317 MORTGAGE TO SECURE FUNDING PTY LTD

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

PRINTED ON 30/10/2014

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register.

© State of New South Wales through Land and Property Information (2014)

SAI Global Property Division an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with section 96B(2) of the Real Property Act 1900.